ACID BASE REVIEW

1. Identify Lewis Acid, in the following reactions: $Zn^{+2} + 4H_2O$ \geq Zn (H₂O)₄⁺² a. $BF_{3} + F^{-1}$ BF_4^{-1} b. $Ag^{+1} + 2NH_3$ $Ag(NH_{3})_{2}^{+1}$ c. 2. Identify the acid – base conjugate pairs in each of the following reactions according with the Bronsted – Lowry framework: a) CH_3COO^- + HCN CH₃COOH CN⁻ b) $NO_2^ HNO_{2}$ + H₂O OH c) H₂PO₄ HPO_4 NH_3 + NH_4^+ d) HClO + $CH_3NH_2 \equiv$ CH₃NH₃⁺ __ ClO⁻ +The ionization constant for hypobromous acid, HOBr is: $Ka = 2.0 * 10^{-9}$ $HOBr_{(aq)} + H_2O_{(aq)} \rightarrow H_3O^+ +$ OBr ⁻ What is the value of the equilibrium constant for the following reaction? H_3O^+ + $OBr^ \overline{ HOBr}_{(ac)}$ + $H_2O_{(aq)}$ (Answer: 5.0 * 10⁸) Given the K_a for HOCN is $3.3*10^{-4}$. What is K_b for OCN⁻? Boric acid, H₃BO₃ is commonly used in eyewash solution in chemistry laboratories to neutralize bases splashed in the eye. It acts as a monoprotic acid, but the dissociation reaction is slightly different from other acids: $B(OH)_{4(aq)} +$ $B(OH)_{3(aq)} + H_2O$ $H^+_{(aq)}$ Calculate the pH of a 0.50 moldm⁻³ solution of boric acid. The K_a for the boric acid is $5.8 * 10^{-10}$. 6. What is the pH of a solution that is 0.10 mol dm⁻³ KNO₂ and 0.15 mol dm⁻³ HNO₂ (nitrous acid)? Use Le Chatêlier's Principle to predict the effect of the following changes on the extent of the hydrolysis of the NaNO₂ (sodium nitrite) solution, upon the addition of: b) NaOH a) HCl c) NaCl d) the solution is diluted Explain each answer. (Recall the important equation is the hydrolysis of the nitrite ion, NO_2^{-} .) $NO_2^- + H_2O = HNO_2 + OH^-$ 8 Calculate: a) pH of a 0.2 mol dm⁻³ NaHSO₃ (K_a for HSO₃⁻ = 6.2 * 10⁻⁸). b) pH of a 0.2 moldm⁻³ phenoxide ion, $C_6H_5O^-$, a weak base ($K_b = 7.7 \times 10^{-5}$) c) pH of a 0.2 moldm⁻³ NH₄Cl? (K_{b} (NH₃) = 1.8 *10⁻⁵) d) pH of a 0.2 moldm⁻³ KCN (K_a (HCN = 4.9 *10⁻¹⁰)

9.Which of the following would form a:
(1) Neutral Solution(2) Acidic Solution(3) Basic Solution

i) NaH_2PO_4 ii) Na₃PO₄ iii) KCl iv) FeCl₃ v) KCN

- 10. Calculate the pH of a buffer solution that contains: a) 0.25 mol dm⁻³ benzoic acid (C_6H_5COOH) acid 0.15 mol dm⁻³ sodium benzoate (C_6H_5COONa) given $(K_a = 6.5*10^{-10})$.
 - b) 500 cm³ of 0.10 moldm⁻³ NaOCl and 500 cm³ of 0.20 moldm⁻³ HOCl, what is the pH of the solution? (Ka (HOCl) = $3.2*10^{-8}$) (Answer: 7.19)

You are asked to go into the laboratory and prepare an ethanoic acid – sodium ethanoate buffer solution, with a pH of 4.00 ± 0.02 . What mole ratio of CH₃COOH to CH₃COONa should be used (K_a (CH₃COOH) = $1.8*10^{-5}$) (Answer = 5.50)

Over what range of pH is a HOCl – NaOCl buffer effective? $(K_{a} (HOCl) = 3.2*10^{-8})$ (Answer: 6.5 - 8.5)

Assuming equal concentrations of conjugate base to acid, which one of the following mixture is suitable for making a buffer solution with an optimum pH of 4.6 - 4.8.

_CH ₃ COOH / CH ₃ COONa	$K_a = 1.8 * 10^{-5}$
NH_3 / NH_4Cl	$K_a = 5.6 * 10^{-10}$
NaOCl / HOCl	$K_a = 3.2 * 10^{-8}$
NaNO ₂ / HNO ₂	$K_a = 4.5 * 10^{-4}$

Consider the carboxylic acids, (acids that contain the general formula –COOH group): ethanoic acid, (CH₂COOH) and chloroethanoic acid, (CH₂ClCOOH).

From the equation: $? G^{o} = ? H^{o} - T? S^{o}$

13.

15

a)

We see that the contributions to the $(? G^{\circ})$ term are the enthalpy term $(? H^{\circ})$ and a temperature time entropy term (T? S°). These contributions are listed below for the two acids at 298 K.

Acid	<u>? H° (mol dm⁻³)</u>	<u>T? S° (mol dm⁻³)</u>
CH ₃ COOH	- 0.57	27.6
CH ₂ ClCOOH	- 4.7	21.1

a) Calculate ? G° for the ionization of these two acids at 25 °C.

b) Calculate the acid ionization constant, K_a of chloroethanoic acid at 25 °C. Recall: $? G^{\circ} = -RT \ln K$

Which is the dominant term (? H° or T? S°) in determining the value of ? G° , (and hence K_a) of the acid?

What processes contribute to the ? H° in the ionization of these acids? (Consider the ionization of the acid as a Bronsted-Lowry acid – base reaction; ie, what bonds need to be broken and what bonds need to be formed.)

50.0 cm³ of 0.10 moldm⁻³ nitrous acid, HNO₂, was titrated with of 0.10 moldm⁻³ KOH solution. After 25.0 cm³ KOH solution, what will be the pH in the titration flask? $(K_a = 4.50 * 10^{-4})$ (Answer: 2.41)

- Calculate the pH at the equivalence point for the titration of 20.0 cm³ of 16. 0.20 moldm^{-3} HCl with 30.0 cm³ of 0.20 moldm⁻³ NH₃ (K_b = 1.82*10⁻⁵)
- Rank the following 0.01 mol dm⁻³ solutions of the following three acids from the highest to 17.

	the lowest in acid streng A. CH ₃ COOH	gth. Explain your reas B. CH ₂ ClC	oning: OOH	C. CCl ₃ COOH
18.	In the reaction: C_6H_5C $K_a (C_6H_5COOH) = 6$ Explain if the products	$COOH + F^{-1} = 550 \times 10^{-5}, K_a (HF)$ or the reactants will be	$C_6 I$ = 3.50 x 10 ⁻⁴	$H_5 COO^{-1}$ + HF rium.
19.	 Which statements is true a) The [H⁺] when b) The [H⁺] when c) The [H⁺] when d) The [H⁺] when 	the about solutions with pH = 2.0 is the 100 t pH = 4.0 is the 100 t pH = 4.0 is the twice pH = 2.0 is the twice	a pH of 2.0 and 4.0. imes that when pH = imes that when pH = 2.0 that when pH = 4.0	= 4.0. = 2.0.).
19.	An aqueous solution of is the concentration of t (a) 0.1M	a weak monoprotic as the acid. (b) 0.01M	cid ($K_a = 1.0 * 10^{-5}$ (c) 0.001M) exhibits a $pH = 3$. What (d) $1 * 10^{-6}M$
20.	Which one of the follow Bronsted-Lowry definit a) HS ⁻	wing species can funct tion: b) S ²⁻ c)	ion both as an acid an Al^{+} d) Al^{3}	and a base under the
21.	The pK _a values of ethat 5.0 and 1.0 respectively (trichloroethanoic acid / a) 0.2	noic acid CH ₃ COOH a y. What is the value of / ethanoic acid) b) 5 c)	and trichloroethanoid the ratio of the diss	e acid, CH ₂ ClCOOH, are ociation constants
22. ANS	Explain how an ind	licator works. BASE REVII	ΞŴ	
1 a. b.	Zn 2+ BF3			
1 a. b. c.	Zn 2+ BF3 Ag 1+			
1 a. b. c. 2 a) B	Zn 2+ BF3 $Ag 1+$ $+ A> CA + CB$ $CA + CB$			
1 a. b. c. 2 a) B b) F	Zn 2+ BF3 Ag 1+ $+A> CA + CB$ $B + A> CA + CB$ $+B> CB + CA$			
1 a. b. c. 2 a) B b) H c) A d) A	$Zn 2+$ BF3 $Ag 1+$ $+ A> CA + CB$ $3 + A> CA + CB$ $+ B> CB + CA$ $+ B \div CA + CB$			
1 a. b. c. 2 a) B b) H c) A d) A 3 5.0x	Zn 2+ BF3 Ag 1+ + A> CA + CB B + A> CA + CB + B> CB + CA + B \div CA + CB 10 ⁸			
1 a. b. c. 2 a) B b) H c) A d) A 3 5.0x 4 3 03	Zn 2+ BF3 Ag 1+ + A> CA + CB + A> CA + CB + B> CB + CA $+ B \div CA + CB$ 10^8 x10 ⁻¹¹			
1 a. b. c. 2 a) B b) F c) A d) A 3 5.0x 4 3.03	Zn 2+ BF3 Ag 1+ + A> CA + CB B + A> CA + CB + B> CB + CA $+ B \div CA + CB$ 10^8 x10 ⁻¹¹			
1 a. b. c. 2 a) B b) F c) A d) A 3 5.0x 4 3.03 5 4.77	Zn 2+ BF3 Ag 1+ + A> CA + CB B + A> CA + CB + B> CB + CA + B \div CA + CB 10 ⁸ x10 ⁻¹¹			
1 a. b. c. 2 a) B b) F c) A d) A 3 5.0x 4 3.03 5 4.77 6 can'	Zn 2+ BF3 Ag 1+ \Rightarrow A> CA + CB \Rightarrow + A> CA + CB \Rightarrow + B> CB + CA \Rightarrow + B \Rightarrow CA + CB 10^8 x10 ⁻¹¹ t do this common ion q uning K ₂ = 4 5x 10 ⁻⁴	uestion because not g	iven Ka	
1 a. b. c. 2 a) B b) F c) A d) A 3 5.0x 4 3.03 5 4.77 6 can' Assu 7 a) St	Zn 2+ BF3 Ag 1+ + A> CA + CB 3 + A> CA + CB + B> CB + CA $+ B \div CA + CB$ 10^8 $x10^{-11}$ t do this common ion q uning Ka= $4.5x10^{-4}$ hift right (H ⁺ bonds with	uestion because not g	iven Ka	d favouring forward)
 a. b. c. a) B b) H c) A d) A 3 5.0x 4 3.03 5 4.77 6 can' Assu 7 a) SI b) S 	Zn 2+ BF3 Ag 1+ \Rightarrow A> CA + CB 3 + A> CA + CB 4 + B> CB + CA $4 + B \div CA + CB$ 10^8 x10 ⁻¹¹ t do this common ion q uning Ka= 4.5x10 ⁻⁴ nift right (H ⁺ bonds with hift left (increasing proc	uestion because not g OH- to form H2O, re luct OH-, favours rev	iven Ka educing product, an erse)	d favouring forward)
 1 a. b. c. 2 a) B b) H c) A d) A 3 5.0x 4 3.03 5 4.77 6 can' Assu 7 a) SH b) SH c) SH 	Zn 2+ BF3 Ag 1+ $+ A \rightarrow CA + CB$ $+ A \rightarrow CA + CB$ $+ B \rightarrow CA + CB$ $+ B \rightarrow CA + CB$ 10^8 x10 ⁻¹¹ t do this common ion q ming Ka= 4.5×10^{-4} hift right (H ⁺ bonds with hift left (increasing proc hift right (Na+ bonds w	uestion because not g OH- to form H2O, re luct OH-, favours rev ith OH- to form NaO	iven Ka educing product, an erse) H, reducing produc	d favouring forward) t and favouring forward)
 a. b. c. a) B b) H c) A d) A f. (a) A <li< td=""><td>Zn 2+ BF3 Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Gg 1- Gg 1-</td><td>uestion because not g OH- to form H2O, ra duct OH-, favours rev ith OH- to form NaO , shift left to form Na</td><td>iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2 +NaC</i></td><td>d favouring forward) t and favouring forward) DH forms NaNO2 + H2O</td></li<>	Zn 2+ BF3 Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Ag 1+ Gg 1- Gg 1-	uestion because not g OH- to form H2O, ra duct OH-, favours rev ith OH- to form NaO , shift left to form Na	iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2 +NaC</i>	d favouring forward) t and favouring forward) DH forms NaNO2 + H2O
 a. b. c. a) B b) H c) A d) A f. (a) A <li< td=""><td>Zn 2+ BF3 Ag 1+ + A> CA + CB + A> CA + CB + B> CB + CA $+$ B \div CA + CB 10^8 x10⁻¹¹ t do this common ion q ming Ka= 4.5x10⁻⁴ nift right (H⁺bonds with hift left (increasing proc hift right (Na+ bonds w <i>e Na+ ions in solution</i>, 11</td><td>uestion because not g OH- to form H2O, re duct OH-, favours rev ith OH- to form NaO , shift left to form Na</td><td>iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2</i> +<i>NaC</i></td><td>d favouring forward) t and favouring forward) DH forms NaNO2 + H2O</td></li<>	Zn 2+ BF3 Ag 1+ + A> CA + CB + A> CA + CB + B> CB + CA $+$ B \div CA + CB 10^8 x10 ⁻¹¹ t do this common ion q ming Ka= 4.5x10 ⁻⁴ nift right (H ⁺ bonds with hift left (increasing proc hift right (Na+ bonds w <i>e Na+ ions in solution</i> , 11	uestion because not g OH- to form H2O, re duct OH-, favours rev ith OH- to form NaO , shift left to form Na	iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2</i> + <i>NaC</i>	d favouring forward) t and favouring forward) DH forms NaNO2 + H2O
 a. b. c. a) B b) H c) A d) A 3 5.0x 4 3.03 5 4.77 6 can' Assu 7 a) SH b) SI c) SH Mor 8 a. b. 	Zn 2+ BF3 Ag 1+ A> CA + CB B + A> CA + CB B + A> CB + CA + B> CB + CA + B \div CA + CB 10^8 x10 ⁻¹¹ t do this common ion q ming Ka= 4.5x10 ⁻⁴ nift right (H ⁺ bonds with hift left (increasing proc hift right (Na+ bonds w <i>e Na</i> + ions in solution, 11 11.6	uestion because not g OH- to form H2O, ra luct OH-, favours rev ith OH- to form NaO , shift left to form Na	iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2 +NaC</i>	d favouring forward) t and favouring forward) <i>DH forms NaNO2</i> + <i>H2O</i>
 a. b. c. a) B b) H c) A d) A 3 5.0x 4 3.03 5 4.77 6 can' Assu 7 a) SI b) SI c) SI More 8 a. b. c. 	Zn 2+ BF3 Ag 1+ A> CA + CB B + A> CA + CB A + B> CB + CA A + B \div CA + CB 10 ⁸ x10 ⁻¹¹ t do this common ion q uning Ka= 4.5x10 ⁻⁴ nift right (H ⁺ bonds with hift left (increasing proc hift right (Na+ bonds w <i>e Na</i> + <i>ions in solution</i> , 11 11.6 5.0	uestion because not g OH- to form H2O, re duct OH-, favours rev ith OH- to form NaO , shift left to form Na	iven Ka educing product, an erse) H, reducing produc <i>NO2. HNO2</i> + <i>NaC</i>	d favouring forward) t and favouring forward) <i>DH forms NaNO2</i> + <i>H2O</i>

9	(i) Basic
	(ii) Basic
	(ii) Noutrol
	(iv) Acidic
	(v) Basic
10	(a) $pH = 8.97$
	(b) 7 19
11	5 56
11	6.49 < pH < 8.49
10	
13	A CH ₃ COOH/CH ₃ COONa [*]
14	a) -28.17 J25.8 J
	b) CH.COOH $AG^{\circ} = -25.8I$
) 9 H ² COOM AG = 25.05
	d) the O-H bond must be weakened and the electronegativity of the halogen aids to lengthen and weaken the bond
15	pH = 2.41
16	Number of mols of both reactants given: treat as LR/XS question
17	CC13COOH > CH2C1OOH > CH3COOH (Cl is electronegative, withdraws e density, weakens OH bond
	dissociates easily, stronger acid)
18	Reactants (HF is more likely to be dissociated (larger Ka) than the Ka of C6H5COOH)
19	a
19	0.1 M
20	HS-
21	d
_	

QUIZ: ACID - BASE

- 1) Which of HNO_3 or HNO_2 is a stronger acid. Explain.
- 2) Why is HOBr as weaker acid than HOCl?
- 3) Which is the stronger base: F or Cl? How do you know?
- 4) Calculate the pH of an aqueous solution of 0.55 mol dm⁻³ formic acid HCOOH and 0.63mol dm⁻³ sodium formate HCOONa. THe pK_a for formic acid is 3.14.
- 5) At normal body temperature 37 °C, K_w has a the value 2.38 * 10⁻¹⁴. Calculate the pH of a neutral aqeous solution in the body.

(Answer: pH = 6.81)

6) The [OH⁻] in a 0.0250 solution of HI at 25°C is:

- a) $2.5 * 10^{-12} \text{ M}$
- b) 4.00 * 10⁻¹² M
- c) $2.50 * 10^{-2} \text{ M}$
- d) $1.60 * 10^{-2}$ M

7) The pH of an aquous solution is 3.52. The [H⁺] is:

- a) $5.2 * 10^{-3}$
 - b) $3.0 * 10^3$
 - c) $4.7 * 10^{-4}$
 - d) $3.0 * 10^{-4}$

8) The acid ionization constant K_a for $HSO_3^- = 6.2 \times 10^{-8}$. The base ionization constant, K_b for SO_3^{-2-} is:

- a) $1.7 * 10^{-2}$
- b) 2.50 *10⁻⁴
- c) $3.12 * 10^{-8}$ d) $1.60 * 10^{-7}$
- 9) Formic acid HCOOH, a monoprotic acid was formerly obtained by distillation of red ants. At 25°C, K_a for HCOOH = 1.7×10^{-4} . For a 2.32 solution HCOOH, calculate:
 - a) pH of solution
 - b) % Ionization of the solution.

10) Calculate the $[H^{+1}]$ of a 0.10 moldm⁻³ solution of a weak base pyridinium chloride, $C_5H_5NHCl^-$. The K_b for pyridine $(C_5H_5N) = 3.12 \times 10^{-6}$.

ANSWERS : QUIZ: ACID - BASE

1 HNO3 is a stronger acid since each additional oxygen withdraws an electron density from the O--H bond, lengthening it and making it weaker, hence allowing the H⁺ to dissociate.

² Chs more electronegative than Br, meaning that it will have a greater ability to withdraw electron density from the OH bond, which makes it weaker and thus making HOCl a stronger acid.

3 F- is a stronger base since it is the strong conj. base of HF, a weak acid. Cl- is a weak base since it is the weak conj. base of HCl, a strong acid.

4 pH = 3.20

⁵ 6.81 = [H₃O]⁺ =
$$\sqrt{K_W} = \sqrt{2.38 * 10^{-14}}$$

6	b) 4.0 x 10 ⁻¹³
7	d) $[H^+] = 3 \times 10^{-4}$
8	d) Kb = 1.61×10^{-7}
9	a) pH = 1.70
	b) %Ionization = 0.86%
10	1.79 x 10 ⁻¹¹ M

REVIEW QUESTIONS: ACID – BASE TEST Write the conjugate acid base pair for the following a) $Fe(H_2O)_6^{3+} + H_2O$ \geq $[Fe(H_2O)_5(OH)]^{2+}$ = H_3O^+ +b) $Ti(H_2O)_4^{4+}$ + H_2O $[Ti(H_2O)_3(OH)]^{3+}$ __ H_3O^+ +c) $C_2H_5NH_2$ H_2O $C_2H_5NH_2^+$ +OH-+2) Place the following in increasing acid strength: a) HBrO, HBrO₂, HBrO₃ b) HClO₂, HBrO₂, HIO₂ c) H_3AsO_3 , H_3AsO_4 3) What are the hydronium ion and hydroxide ion concentrations in a 0.050 moldm⁻³ aqueous solution if hydrogen chloride. 4) a) What will be the pH of an aqueous solution containing 0.040 moldm⁻³ NaOH? b) 0.10 mol dm^{-3} solution of barium hydroxide. c) 0.033 mol dm⁻³ solution of calcium hydroxide, Ca(OH)₂ 5) What is the hydronium ion concentration of a solution with a pH of 2.50.

-6) If the hydronium ion concentration $[H_3O^+] = 1.44 \times 10^{-3}$ mol dm⁻³, what is the pOH?

7) If the pOH = 7.41 what is the $[H_3O^+]$?

8) If the pH = 0.34, what is the $[OH^-]$?

- 9) If the pOH = 5.52, what is the $[H^+]$?
- 10) Acetylsalicylic acid, (asprin), is a weak monoprotic acid which can be abbreviated as Hasp. A 0.10 mol dm⁻³ solution of the acid has a pH of 2.24. Calculate the acid ionization concentration constant, K_a for acetylsalicylic acid.
- 11) Ascorbic acid, (Vitamin C), is a weak monoprotic acid which can be a abbreviated as HAsc. It has an ionization constant of 8.0×10^{-3} , calculate the pH of a 0.100 mol dm⁻³ solution.
- 12) A new drug obtained from seeds of a strange Colombian plant was found to be a weak organic base. A 0.100 mol dm⁻³ solution in H_2O of this drug has a pH of 10.8. What is the K_b of the drug?
- 13) Caffeine is a weak base that is related to NH_3 . For the purposes of this example we can abbreviate its formula to CafN. It has a base ionization constant of $4.4*10^{-4}$. Calculate the pH of a 0.70 mol dm⁻³ solution.

-14) What is the pH of 0.22 moldm⁻³ solution of formic, HCOOH, which has a $pK_a = 3.42$.

(5) What is the pH of a weak base, diethyl amine $(C_2H_5)_2NH$, 0.226 mol dm⁻³ solution has a

 $pK_a = 2.62.$

16) A 0.32 mol dm⁻³ solution of chlorous acid, $HClO_2$ has a K_a of $1.22*10^{-4}$. What is the percent ionization of $HClO_2$.

17) When 0.0250 mol NaNO_{2(s)} is added to :

a) 500 cm³ solution of 0.100 mol dm⁻³ HNO₂, what is the resulting pH?

$$HNO_{2} + H_{2}O \xrightarrow{} H_{3}O^{+} + NO_{2}^{-} \qquad K_{a} = 5.15 \times 10^{-4}$$
$$NaNO_{2} \xrightarrow{} Na^{+} + NO_{2}^{-}$$

18) What is the:

a) pH a 1.0 mol dm⁻³ solution.

- b) pH in NH₃ and 0.10 mol dm⁻³ in NH₄NO₃
 - $K_b(NH_3) = 1.8 * 10^{-5}$

19) What is the pH of a solution, what is the % ionization of 0.10 moldm⁻³ HF in

- a) H₂O
- b) In the presences of 1.0 mol dm⁻³ aqueous solution of NaF. ($K_a(HF) = 7.22 \times 10^{-2}$)

20) Calculate the [OH⁻], pH, % ionization of a solution of 0.10 moldm⁻³ NH₃ K_b= 1.8×10^{-5} .

21) Calculate the hydrogen ion concentration, and the pH of a 0.220 mol dm⁻³ solution of vitamin C, (ascorbic acid), with a $K_a = 7.95 \times 10^{-5}$ at 25 °C.

(2) A solution of hydrofluoric acid contains 2.00 g of HF per dm³ and has a pH of 2.22. What is the acid ionization constant for HF?

23) The formation of products is strongly favoured in this acid-base system:

 $HX + Y^{-1} \longrightarrow HY + X^{-1}$

a) Identify the bases competing for protons.

b) Which base is stronger?

c) Which is the weaker acid HX or HY?

d) Does the K_a for this system have a large or small value?

e) How is the equilibrium affected by the addition of the soluble salt NaY?

ANSWERS - REVIEW QUESTIONS: ACID - BASE TEST

1a	Acid:	Fe $(H_2O)_6^{3+}$	Conjugate Base: $[Fe (H_2O)_5(OH)]^{2+}$	
	Base:	H_2O	Conjugate Acid: H ₃ O ⁺	
1b	Acid:	$Ti(H_2O)_4^{4+}$	Conjugate Base: $[Ti (H_2O)^3(OH)]^{3+}$	
	Base:	H_2O	Conjugate Acid: H ₃ O ⁺	
1e	Acid:	H_2O	Conjugate Base: OH	
	Base:	$C_2H_5NH_2Con$	jugate Acid: $C_2H_5NH_3^+$	
2a	HBrC	, HBrO2, HB	rO3	
2b	НЮ ₂ ,	HBrO ₂ , HClO	D_2	
2c	H3As	O3, H3AsO4		
3	(H 3O+] = 0.050M, [OH-] = 2.00×10^{-13} M			
4a	pH =	12.6		
4b	b pH = 13.3			
4c	pH =	12.82		
5	[H3O	+] = 3.16 * 10) ⁻³ M	

6 pOH = 11.16
7 $[H3O+] = 2.57 * 10^{-7} M$
8 $[OH-] = 2.19 * 10^{-14} M$
9 $[H3O+] = 3.31 \times 10^{-9} M$
10 Ka = 3.31×10^{-4}
11 pH = 1.55
12 Kb = 3.98×10^{-6}
13 pOH = 12.24
14 $pH = 2.04$
15 pH = 1.63
16 % Ionization is 1.95 %
17 pH = 2.99
18 1.0 M NH ₃ / 0.10M NH ₄ NO ₃
19a Ka (HF) is 7.22 x 10 ⁻⁴
pH=2.07. % Ionization = 8.50
19b pH= 4.14, 0.072% Ionization
20 [OH-] 1.34×10^{-3} M, pH = 11.1, % Ionization =1.34%
21 $[H3O+] = 4.18 * 10^{-3} \text{ M}, \text{ pH} = 2.38$
22 Ka = 3.63×10^{-4}
23a Bases: Y- and X-
23b Stronger base : Y-
23c Weaker acid: HY
23d Ka smaller value since Reaction represents equilibrium reaction
^{23e} Adding soluble salt NaY affects the equilibrium as follows:
Nay will dissociate because it is an ionic salt. Increase of [Y ⁻] ions (reactant) dissociated in solution fro
NaY. By LeChatelier's principle, greater concentration of reactants (in this case [Y ⁻]) will cause the
equilibrium to shift right and more products will be formed.

TEST: ACID BASE

1) Lactic acid (2-hydroxypropanoic acid), $C_6H_{12}O_3$, is a weak monoprotic acid. It is found in sour milk and in the blood after vigorous exercise.

- a) Write the equilibrium expression for the dissociation of this acid and calculate the $[H_3O^+]$ for 0.12 mol dm⁻³ solution of lactic acid. (Ka (lactic acid =))
- b) Find the %ionization of a 0.12 mol dm^{-3} solution of lactic acid.
- c) Koumiss, a fermented beverage made from mare's milk contains 12.2 g of lactic acid in 25 cm³ of water. Calculate the volume of 0.15 mol dm⁻³ NaOH that would be needed to neutralise the lactic acid.

The value of the pK of propanoic acid, C_2H_5COOH , is 4.87. What is the value of K_a ?

Calculate the pH of a 0.240 moldm⁻³ aqueous solution of propanoic acid.

9.60g of C_2H_5COONa is dissolved in 150 cm³ of 0.24 moldm⁻³ propanoic acid. What will be the resulting pH of the solution. State any approximation you have made in obtaining the answer.

[Note: $M_R (C_2 H_5 COONa) = 96 \text{ g mol}^{-1}, :: n = 0.100 \text{ mol}, :: c = n/V = 0.10/0.15 = 0.667 \text{ mol dm}^{-3}$]

d) Explain how the solution in (c) can act as a buffer solution if small amounts of acid or alkali are added.

) A 0.10 mol dm⁻³ solution of which of the following acids will have the greater $[H^+]$?

a)HNO ₂	$K_a = 1.3 * 10^{-4}$	b)	H_2SO_3 $K_a =$	$= 1.3 * 10^{-2}$
c)H ₃ PO ₄	$K_a = 7.7 * 10^{-3}$	d)	H_2SiO_3	$K_a = 1.7 * 10^{-10}$

4) Only one of the following substances CANNOT function as a Lewis acid or Lewis base. Identify that substance on the basis of its structure.

a) NH_4^+ b) NH_2^- c) NH_3 d) BF_3 e) OH^-

5) A student determined the concentration of a solution of hydrochloric acid by an acid-base titration. When a 45.0 cm^3 sample of the acid was titrated to a phenolphthalein endpoint,

36.0 cm³ of 0.15 mol dm⁻³ KOH was required. What was the molarity of the HCl solution?

a) 0.30 b) 0.24 c) 0.12 d) 0.06

6) A solution is prepared by adding 0.25 mol of CH_3COOH of solution. The pH of this solution is 2.67 and the % ionization 0.848 %. What will happen to the pH and the % ionization of this solution as it is diluted with H_2O to a volume of 2.0 dm³.

- a) The pH will increase, the % ionization it increase.

b) The pH will decrease, the % ionization it increase.

¢)

A.

The pH will increase, the % ionization it decrease.

- d) The pH will decrease, the % ionization it decrease.
- 7) Which of the following solutes at a concentration of 0.1M will produce an acidic solution?

I) N	H ₄ Cl	II) CH ₃ COONa	III) $\operatorname{Fe}_2(\operatorname{SO}_4)_3$
I only	B. II only	C. I and II only	D. I, II and III

Savita Da . COM