Summary Table of pH and pOH Relationship

Distilled water is a neutral solution of pH 7.

$$2 \text{ H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

shows the ionization of water

$$H_2O \longrightarrow H^+ + OH^-$$

at
$$pH = 7$$

$$[H^+] = 1.0 \times 10^{-7}$$

$$[H^{+}] = 1.0 \times 10^{-7}$$
 $[OH^{-}] = 1.0 \times 10^{-7}$

Therefore the Ionic Product of Water = $[H^+]$ x $[OH^-]$ = 1.0 x 10 $^{-14}$ = a constant = Kw @ 25 O C

pH relates directly to the [H⁺]:

$$pH = - log [H^+]$$

 $pOH = - log [OH-]$

$$[H+] = 10^{-pH}$$

 $[OH^{-1}] = 10^{-pOH}$

	$pOH = -log[OH-]$ $[OH^{-1}] = 10^{-pOH}$		
SOLUTION (aq)	[H ⁺] (mol dm ⁻³)	[OH ⁻] (mol dm ⁻³)	рН
0.1 mol dm ⁻³ HCl			
0.1 mol dm ⁻³ NaOH			
1.0 x 10 ⁻² mol dm ⁻³			
HC1			
1.0 x 10 ⁻² mol dm ⁻³			
КОН			
1.0 x 10 ⁻³ mol dm ⁻³ HCl			
1.0 x 10 ⁻³ mol dm ⁻³			
NaOH			
1.0 x 10 ⁻⁴ mol dm ⁻³ HCl			
1.0 x 10 ⁻⁴ mol dm ⁻³ NaOH			
1.0 x 10 ⁻⁵ mol dm ⁻³			
HC1			
1.0 x 10 ⁻⁵ mol dm ⁻³			
NaOH			
1.0 x 10 ⁻⁶ mol dm ⁻³			
HC1			
1.0 x 10 ⁻⁶ mol dm ⁻³			
NaOH			

4.00 g of NaOH are dissolved in water to make 1.0 dm³ of solution.

What is the concentration of the solution in scientific notation?

What is the $[OH^{-}]$?

c) What is the $[H^+]$? d)

What is the pH? e)

How could 400 cm³ of a 0.05 mol dm⁻³ solution be made from the above solution? f)