Summary Table of pH and pOH Relationship Distilled water is a neutral solution of pH 7. $$2 \text{ H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$ shows the ionization of water $$H_2O \longrightarrow H^+ + OH^-$$ at $$pH = 7$$ $$[H^+] = 1.0 \times 10^{-7}$$ $$[H^{+}] = 1.0 \times 10^{-7}$$ $[OH^{-}] = 1.0 \times 10^{-7}$ Therefore the Ionic Product of Water = $[H^+]$ x $[OH^-]$ = 1.0 x 10 $^{-14}$ = a constant = Kw @ 25 O C pH relates directly to the [H⁺]: $$pH = - log [H^+]$$ $pOH = - log [OH-]$ $$[H+] = 10^{-pH}$$ $[OH^{-1}] = 10^{-pOH}$ | | $pOH = -log[OH-]$ $[OH^{-1}] = 10^{-pOH}$ | | | |---|---|--|----| | SOLUTION (aq) | [H ⁺] (mol dm ⁻³) | [OH ⁻] (mol dm ⁻³) | рН | | 0.1 mol dm ⁻³ HCl | | | | | 0.1 mol dm ⁻³ NaOH | | | | | 1.0 x 10 ⁻² mol dm ⁻³ | | | | | HC1 | | | | | 1.0 x 10 ⁻² mol dm ⁻³ | | | | | КОН | | | | | 1.0 x 10 ⁻³ mol dm ⁻³
HCl | | | | | 1.0 x 10 ⁻³ mol dm ⁻³ | | | | | NaOH | | | | | 1.0 x 10 ⁻⁴ mol dm ⁻³
HCl | | | | | 1.0 x 10 ⁻⁴ mol dm ⁻³
NaOH | | | | | 1.0 x 10 ⁻⁵ mol dm ⁻³ | | | | | HC1 | | | | | 1.0 x 10 ⁻⁵ mol dm ⁻³ | | | | | NaOH | | | | | 1.0 x 10 ⁻⁶ mol dm ⁻³ | | | | | HC1 | | | | | 1.0 x 10 ⁻⁶ mol dm ⁻³ | | | | | NaOH | | | | 4.00 g of NaOH are dissolved in water to make 1.0 dm³ of solution. What is the concentration of the solution in scientific notation? What is the $[OH^{-}]$? c) What is the $[H^+]$? d) What is the pH? e) How could 400 cm³ of a 0.05 mol dm⁻³ solution be made from the above solution? f)