The Effect of Structure on Acid-Base Properties

Acid Strength depends on (1) the strength of the bond	
(2	2) The stability of the anion, X^{T} , fo	rmed

For BINARY ACIDS (ex. H-X (aq))	H-X (aq)	\longrightarrow $H^+_{(aq)}$ -	$+ X^{(aq)}$
---------------------------------	----------	----------------------------------	--------------

The strength of the acids depends on the strength of the H-X bond. This depends on two most important factors influencing the H-X bond:

(1) Radius of the X: $H-X_{(aq)}$ In <u>general</u>, the **larger** the atom X, the **stronger** the acid. For larger atoms of X, the e⁻ cloud is more diffuse, the atomic overlap is weaker. Therefore, $H-X_{(aq)}$, bond breaks EASILY than in the molecule of HX _(aq) where the atom of X is smaller.

Thus, Acid strength increases with Increasing Radius of X.

Ex.	H—Cl	<	H — Br	<	H—I
Covalent Bond Length:	0.128		0.141		0.160

(2) Electronegativity of X, i.e. the polarity of X

In general, the strength of an acid **increases** as electronegativity of X **increases**. The greater the electronegativity of X, the more strongly it attracts e^{-1} 's from the H- atom, thereby permitting the H⁺ to ionize off. Thus, the stronger the acid.

H_2O	Increasing Acid	HF		H_2S	< H ₂ Se	< H ₂ Te
H_2S	Strength with	HCl	Atomic Radius	104	117	137
H ₂ Se	Increasing	HBr	Electronegativity	2.5	2.4	2.1
H ₂ Te	Atomic Radius	HI				

However, in <u>general</u>, going **down a group**, the **atomic radius of X predominates**, (i.e. atomic radius of X is more significant) than the electronegativity of X. Therefore, **acid strength increases down a group**.

Going Across a Period

NH ₃ H ₂ O HF		$PH_3 \ <$	H_2S	<	HCl	
	Atomic Radius	110	104		99	
Acid Strength Increases	Electronegativity	2.1	2.5		3.0	
						 Increasing Acid Strength
						 Decreasing At. Radius
						Increasing e.negativity

Going **across a period**, the **electronegativity factor predominates**, the smaller decrease in atomic radius is insignificant.

Therefore, the **strength of binary acids**, **H-X**_(aq), **increases** from **left to right** across a period, and from **top to bottom** in groups.

Strength of OXY-ACIDS

I. For Same Structure, but different central atom

Ex. $\mathbf{H} - \mathbf{O} - \mathbf{X}$: $\mathbf{H} - \mathbf{O} - \mathbf{C}\mathbf{l} > \mathbf{H} - \mathbf{O} - \mathbf{B}\mathbf{r} > \mathbf{H} - \mathbf{O} - \mathbf{I}$

The ability of X to withdraw e^- density from O-H bond increases with increasing electronegativity of X. e.g. $HClO_{3 (aq)} > HBrO_{3 (aq)}$

Thus, for acids of the **same structure**, the **strength of an acid increases** as the **electronegativity of X**, the central atom increases, and where the central atom X is small.

II. For Same Central Atom, but with different number of Oxygen-atoms

The acid strength increases with the increase in number of Oxygen-atoms, i.e. with increase in oxidation number of the central atom.

	HClO	<	HClO ₂	<	HClO ₃	<	HClO ₄
Oxidation N ^o :	+1		+3		+5		+7
hypo	chlorous aci	d	chlorous acio	1	chloric acid		perchloric acid
chlor	ic (I) acid	(chloric (III) a	icid	chloric (V)	acid	chloric (VII) acid

Each O-atom withdraws e^- density from the O–H bond. Thus, lengthening and weakening the O – H bond further. Therefore, the stronger the acid as the number of oxygen atoms increase in the molecule.

Assignment: State which of following in each pair is the stronger acid. Justify your answer.

(a) HCl, HBr	(b) HCl, H ₂ S	(c) HClO ₃ , HBrO ₃	(d) H ₃ PO ₄ , H ₃ PO ₃
(e) HNO ₂ , HNO ₃	(f) CH_4 , NH_4	(g) HOBr , HOI	(h) CH ₄ , SiH ₄
(i) H_2CO_3 , H_2SiO_3	(j) H_3AsO_4 , H_3AsO_3	(k) H ₃ AsO ₄ ,	H ₃ PO ₄
(1) H_2Se , AsH_3	(m) H_2Te , H_2Se		