The Common Ion Effect Consider a weak acid and a salt containing one ion common to both. **Problem 1**: $CH_3COOH + H_2O \longrightarrow H_3O^{+1} + CH_3COO^{-1}$ If we were to take a 0.1 mol dm⁻³ CH₃COOH solution, $K_a = 1.8 \times 10^{-5}$. Calculate its pH: (answer: pH = 2.9) Now, suppose we dissolve 0.1 mol dm⁻³ sodium acetate, CH₃COONa_(aq), in that same solution, with your current knowledge of equilibrium, predict what would be the pH of the new solution. Justify your answer. (Answer: reverse reaction will be favoured according to LeChatelier's Principle, .: decreasing the [H_3O^{+1}], hence pH will increase) Now, determine the pH of this solution. (answer: pH = 4.8) Hence in conclusion, one can say that the presence of a common ion greatly inhibits the dissociation of an acid and lowers the concentrations of the H₃O⁺¹, thus increasing the pH of the solution, making the solution less acidic. **Problem 2:** See Page 2: K_a & The Common Ion Effect on how to solve these problems. When 0.025 mol sodium nitrite_(s), is added to a 500 cm³ solution of 0.100 mol dm⁻³ nitrous acid,HNO_{2 (aq)}, the resulting pH is 3.00. Determine the K_a for nitrous acid. ### **Problem 3:** What will be the resulting acetate ion concentration when 0.10 mol dm⁻³ hydrochloric acid solution, HCl_(aq) is added to a 0.1 mol dm⁻³ solution of aqueous acetic acid solution, $$K_a = 1.8 \times 10^{-5}$$. (ans: [CH₃COO⁻¹] = 1.8 x10⁻⁵) ### **Problem 4:** Calculate the $[OH^{-1}]$, the pH, and the percent ionisation of an aqueous solution of 1.0 mol dm⁻³ aqueous solution of ammonia, $NH_{3(aq)}$, that also contains 0.10 mol dm⁻³ ammonium chloride, $$K_{b(NH_3)} = 1.8 \times 10^{-5}$$. (Ans: [OH⁻¹] = 1.8 x 10⁻⁴, pH = 10.26, % ionization = 1.8 x 10⁻²%) ### **Problem 5:** - a) Calculate the percent ionization of a 1.0 mol dm⁻³ HF_(aq), $K_{a(HF)} = 7.2 \times 10^{-4}$. - b) Calculate the percent ionisation of a 1.0 mol dm⁻³ HF_(aq) that also contains 1.0 mol dm⁻³ of sodium fluoride, NF. $K_{a(HF)} = 7.2 \times 10^{-4}$. - c) What deductions can you make from these calculations. (Ans: (a) % ionization = 2.68 %, (b) 7.2×10^{-2} %, (c) .: the presence of a common ion greatly inhibits the %ionization of an acid and lowers the [H₃O⁺¹], hence increasing the pH of the solution, i.e makes it less acidic) #### **Problem 6:** What is the pH of a solution which contains 0.10 mol dm⁻³ KClO and a 0.05 mol dm⁻³ HClO, 1 $$K_{a(HClO)} = 2.9 \times 10^{-8}$$ (Ans: pH = 7.84) # K_a & THE COMMON ION EFFECT We are given an acid and a salt containing one ion common to both. 1. When 0.0250 mol sodium nitrite solid is added to a 500.0 cm³ solution of 0.100 mol dm⁻³ nitrous acid, the resulting pH is 3.00. Determine the K_a for nitrous acid, HNO₂(aq). $$HNO_2(aq) + H_2O \longrightarrow H_3O^+(aq) + NO_2^{-1}(aq)$$ $NaNO_2(aq) \longrightarrow Na^+(aq) + NO_2^{-1}(aq)$ NOTE: The NO₂⁻¹ ion is common to both the salt and the acid. The Na⁺ ion is only a spectator ion. Le Chatelier's Principle comes into effect. The reaction will proceed to the left since there is an excess of NO₂ ion $$\begin{split} [H_3O^+]_E &= 10^{-pH} \\ &= 10^{-3.00} \\ &= 1.00*10^{-3} \text{ or } 0.00100 \\ [NO_2^{-1}] &= \text{mol/dm}^3 = 0.025 \text{ mol } / 0.5 \text{dm}^3 = 0.05 \text{ mol dm}^{-3} \end{split}$$ | | [HNO ₂]
(mol dm ⁻³) | [H ₃ O ⁺]
(mol dm ⁻³) | [NO ₂ ⁻¹]
(mol dm ⁻³) | |--------------------|--|---|---| | Initial | 0.100 | | 0.0500 | | Change | - 0.00100 | +0.00100 | +0.00100 | | Equil ^m | 0.099 | 0.00100 | 0.0510 | $$K_a = [H^+][NO_2^{-1}]$$ $$= (0.00100) (0.0510)$$ $$= (0.099)$$ $$= 5.152 * 10^{-4}$$ \therefore The K_a is 5.15 * 10⁻⁴ mol dm⁻³