SNC2D: Exam Review Questions: MOTION

True/False

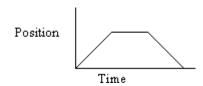
Indicate whether each statement is true or false.

Correct each false statement by the changing the **bold** part.

T	/	F	
T	1	F	

- 1. Scalar quantities have both a magnitude and a direction.
- 2. Velocity and speed can have the same **units**.
- T F 3. Acceleration can be determined by finding the *slope* of a position-time graph.
 4. If an object's motion is uniform, its average velocity and its **instantaneous velocity** are equal.
- 5. If a journey takes you back to your starting point, your displacement and the distance you traveled **equal zero**.

7.	o da coroa oqual zoro.				
Com	pletion				
6. A	n object's speed doesn't change if the according	eleration	is		
7. T	he <u>area</u> under the graphed line in a		graph is the distance traveled.		
Mul	tiple Choice				
Circle	the letter of the best answer for each of the	ne follow	ving questions.		
	a distance-time graph has zero slope, yo				
) moving at constant speed	(b)	moving to the right and accelerating		
(c) (e	moving uniformly to the left not moving at all	(d)	moving to the left and accelerating		
9. W	Thich quantity cannot be calculated from a	speed-t	ime graph?		
(a) the object's initial position	(b)	the direction of the object's motion		
,) how fast the object is moving) the distance traveled by the object.	(d)	whether the object is accelerating		
ea be	appose that you are studying cars travelling ch cars initial speed, final speed, and time alow could you calculate from this data? (b) average acc	taken to	o cross the intersection. Which quantity		
(a	distance traveled (b) average acc	Cici atiOi	(c) none of the above		


- 11. Average speed can best be defined as:
- (a) the speed at which an object is travelling at a particular instant;
- (b) an object travelling at the same speed over a period of time;
- (c) the total distance covered over the total time measured;
- (d) the rate of change in speed.
 - 12. Instantaneous speed can be best defined as:
 - (a) the speed at which an object is travelling at a particular instant;.
 - (b) an object travelling at the same speed over a period of time;
 - (c) the total distance covered over the total time measured;
 - (d) the rate of change in speed.

	•	ce-time graph					
(a) the object is no	_	` '		object's speed is increasing.			
(c) the object has a	low speed.	(d) th	e object has a hi	gh speed.			
14. A long stra (a) the object is ch (c) the object main (d) the object main	anging speed. tained a unifo	(b) thorm speed for		ed. time.			
		1	1				
15. An object (a) constant speed		d less distanceding up	e per unit time is (c) instantane	an example of: ous speed (d)			
16. A car cove (a) constant speed		nce per unit of eding up	f time is an exam (c) instantane	uple of ous speed (d) slo	owing down		
(a) change in posit	Acceleration is defined as: e in position over a period of time; position over a period of time;			(b) change in speed over a period of time;			
(d) the time it take	s for an objec	t to go from p	•	ion 2.			
Which of the (a) displacement	the following (b) spec	is a vector quad	antity? (c) time	•			
(a) distance	the following (b) spec	is a vector quad	antity? (c) time	(d) velocity			
20. Which of (a) 40 km	•	is an example m/h[E]	of displacement (c) 1.5 m [right]		5 km/h		
21. Thatcha w west. Her displace		end's house 5	blocks east and	then walks home	e again 5 blocks		
(a) 10 blocks	(b) zero		(c) 10 blocks	[E] (d) 10	blocks [W]		
Short Answer 1. Classify each	quantity listed	below as a vo	ector or a scalar				
(a) mass	(b) speed	(c) time	(d) velocity	(e) position	(f) acceleration		
2. How many sig	nificant digit	s are in each	measurement bel	ow?			
(a) 4.00 cm	(b) 0.0063 s		(c)	(c) 104 kg			
3. Distinguis	h, in words, tl	ne difference l	petween position	and displacem	ent.		
Answer Position is the dist	ance and dire	ction from a re	eference point a	nd displacement	is the change in		

Position is the distance and direction from a reference point, and displacement is the change in position.

4. Sketch a position-time graph in which a person walks forward at a constant velocity, stops for a short period of time, and then goes back to where he started.

Answer

5. (a)

When adding vector quantities using vector diagrams add them by connecting the a) one vector to the _____ on the next vector.

- Answer:
- (a) head
- (b) tail

- 6.
- (a) State the rule for adding vectors in a vector diagram?
- (b) What is the rule for drawing the resultant vector in a vector diagram?

Answer:

- (a) Join each subsequent vector by connecting the head end of the last vector to the tail end of the next vector.
- (b) Find the resultant vector by drawing an arrow from the tail of the first vector to the head of the last vector.
- 7. Which of the following situations are examples of **uniform motion**, and which are examples of **accelerated motion**?
 - (a) a runner poised at the starting line

6. acceleration

- (b) the runner speeding up just after the starting pistol is fired.
- (c) the runner travelling at a steady speed around a corner
- (d) the runner slowing down after passing the finish line
- 8. Match the following terms with their descriptions. Place the letter of the description from column B in the blank provided in column A that matches that description.

COLUMN A COLUMN B

1. position

Column A that matches that description.

Column A that matches that description.

Column B in the blank provided in column A that matches that description.

A. change in position

Column B in the blank provided in column A that matches that description.

Column B in the blank provided in column A that matches that description.

Column B in the blank provided in column A that matches that description.

Column B in the blank provided in column A that matches that description.

Column B in the blank provided in column A that matches that description.

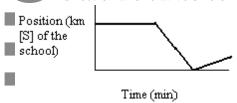
Column B in the blank provided in column A that matches that description.

F. displacement in a given time

- 3. distance C. location relative to a reference point
 4. speed D. change in velocity in a given time
 - 5. velocity

 E. length along a path

Answer: The answers are C - 1, A - 2, E - 3, B - 4, F - 5, D - 6


- 9. The worst recorded elevator disaster occurred in South Africa, when a mine elevator dropped 487 m in 9.7 s before hitting the bottom of the mine shaft. How **fast** would the elevator be traveling at the end of the fall?
 - Assume an initial velocity of 0 m/s and the acceleration due to gravity is 9.8 m/s2.
- 10. High-speed passenger elevators move upward at speeds of up to 7.1 m/s. At this rate, how long would an elevator take to climb 37 m (about ten stories)?
- 11. A motorcycle at a stop sign accelerated <u>uniformly</u> for 4.5 s, and reached 100.0 km/h.
- a) convert 100.0 km/h into m/s
- b) determine the motorcycle's acceleration.
- 12. A barrel rolls down a road at a constant speed, rolls over a rough patch, and then rolls down a hill until it hits a wall and stops.
 - (a) Draw a speed-time graph of the barrel's motion.
 - (b) Draw a distance-time graph of the barrel's motion.
- 13. What is the **displacement** of a person who starts at a position of 2.8 km [N of X], walks 5.0 km [E], then goes 7.4.0 km [S]?
- 14. What is the **displacement** of an airplane which maintains a constant velocity of 200 km/h [W] for 45 minutes?
- 15. A shark travelling at 2.0 m/s accelerates at 4.3 m/s² to a final speed of 15.0 m/s. What is the clapsed time during the acceleration?
- 16. How can you tell from a speed-time graph if an object is accelerating?
- 17. The slope of a position-time graph represents the ______ of the object.

Answer: velocity

- 18. Explain the meaning of a negative slope on a position-time graph.
- Answer: A negative slope means the object is moving in the direction defined as negative for the graph.
- 19. Explain the meaning of a zero slope on a position-time graph.

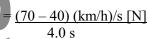
Answer: A horizontal line means that the object is not moving.

Write a brief description about the motion of the following object and include the direction and relative size of the different velocities.

Answer:

The object has stopped south of the school for several minutes and then proceeds north at a fast, constant velocity until it reaches the school. The object then goes south away from the school for a few minutes at a slower, constant velocity.

21. You are in a car that is travelling at a velocity of 40 km/h [N]. The car suddenly speeds up to 70 km/h [N] in 4.0 s. Calculate the acceleration of the car in that 4.0s.


Answer

$$\vec{v}_1 = 40 \text{ km/h [N]}$$

$$\vec{v}_2 = 70 \text{ km/h [N]}$$

$$\Delta t = 4.0 \text{ s}$$

$$\vec{a}_{\text{av}} = \frac{\vec{v}_2 - \vec{v}}{\Delta t}$$

= 7.5 (km/h)/s [N] or +7.5 (km/h)/s

The average acceleration of the car is 7.5 (km/h)/s [N].

You throw a penny into a wishing well with a velocity of 10 m/s [down]. The penny accelerates at 10 m/s² [down] to a final velocity of 20 m/s [down]. How long did this take in seconds?

Answei

$$v_1 = 10 \text{ m/s } [\text{down}] = -10 \text{ m/s}$$

$$\vec{v}_2 = 20 \text{ m/s [down]} = -10 \text{ m/s}$$

$$\vec{a}_{av} = 10 \text{ m/s}^2 \text{ [down]} = -10 \text{ m/s}^2$$

$$\Delta t = ?$$

$$\Delta t = v_2 - v_1$$

$$a_{av}$$

$$=$$
 $(-20 \text{ m/s}) - (-10 \text{ m/s})$

$$-10 \text{ m/s}^2$$

$$= \frac{-10 \text{ m/s}}{-10 \text{ m/s}^2}$$

It takes 1.0 s for the penny to accelerate from -10 m/s to -20 m/s.