Review: Redox Reactions

Redox reactions involve electron transfer

Definition: OIL- Oxidation Is Loss of electrons

RIG- Reduction Is Gain of electrons

Oxidation Numbers:

A form of book-keeping for electrons, enables us to keep track of electrons. An oxidation number is made up of two parts:

i) the sign: if the sign is:

+positive the atom has lost control of its e⁻s -negative the atom as gained control of its e⁻s

ii) the **number** is always written as a Roman Number, this gives the number of electrons over

which electron control has changed compared to the situation in the pure element.

Rules for Working out Oxidation Numbers

- 1. Elements = 0
- 2. Oxygen = -2 (expect peroxides +1)
- 3. H = -1 (except metal hydrides -1)
- 4. ion = charge on ion
- 5. Sum of oxidation numbers of all atoms in a compound = 0
- 6. Sum of oxidation numbers of all atoms in an ion = charge on the ion

Recognizing Redox Equations

Redox Equations are recognised by the following steps:

- i) work out the Oxidation numbers of all atoms in the equation
- ii) and then seeing if the oxidation number of any atom has a changed.

Therefore a redox reaction has taken place.

- ↑ increase in oxidation number = Oxidation
- ↓ decrease in oxidation number = Reduction

Example 1:

$$Mg^0 + Cl_2^{\ 0} \rightarrow Mg^{+2}Cl_2^{-2}$$
 (Mg is oxidised, chlorine is reduced)

$$S^{+4}O_2^{-2} + H_2^{+1}S^{-2} \rightarrow S^0 + H_2^{+1}O^{-2}$$
 (S in SO₂ is reduced and S in H₂S is oxidized)

Redox is a 2-way Process:

Reduction and Oxidation (redox) occur simultaneously.

$$Zn + Cu^{+2} \rightarrow Cu + Zn$$

Oxidising agents [aka: oxidants]: cause oxidation in other reacting species, makes other reacting substances lose electrons. The oxidant gains electrons, i.e. is an **electron acceptor**, (recall: Lewis Acid); however an oxidant is itself reduced.

E.g. reactive non-metals

$$O_2$$
, $O_2 + 4e^- \rightarrow 2O^{-2}$
 X_2 , $X_2 + 2e^- \rightarrow 2C1^-$

Oxo-compounds:
$$KMnO_4/H^+ K_2Cr_2O_2/H^+$$
, H_2O_2

$$5e^{-} + 8 H^{+} + MnO_{4}^{-} \rightarrow Mn^{+2} + 4H_{2}O$$

 $Cr_{2}O_{2}^{-2} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{+3} + 7H_{2}O$
 $2e^{-} + 2 H^{+} + H_{2}O_{2} \rightarrow 2H_{2}O$

Reducing Agents: cause reduction in other substances; makes reacting species gain electrons. [aka: Reductant] Loses e⁻/ e⁻ donors.

e.g. Reactive metals	Group I/II, Cu, Fe, Sn	$M \rightarrow M^{n+} + ne^{-}$
H_2	$H_2 + O^{-2} \rightarrow H_2O + 2e^-$	
C	$C + O^{-2} \rightarrow CO + 2e^{-}$	
CO	$CO + O^{-2} \rightarrow CO_2 + 2e^{-}$	
CO H ₂ S SO ₂	$H_2S \rightarrow S + 2H^+ + 2e^-$	
SO_2		
1	$2I^{-} \rightarrow I_2 + 2e^{-}$	
$C_2O_4^{-2}$	$C_2O_4^{-2} \rightarrow 2 CO_2 + 2e^-$	
(Oxalic acid, oxalates)		

Order of Reacting for Metals and Non-metals

Reacting Series/ Electrochemical series

Cu

K	Reactivity Decreases ↓	F_2	Reactivity Decreases ↓
Na		Cl_2	
Mg		Br_2	
Zn		I_2	
Fe			

Balancing Redox Equations using oxidation numbers

- 1. Assign O.N to all atoms in the Equation
- 2. Determine which elements undergo oxidation/reduction
- 3. Balance each change in O.N with a coefficient
 - 4. Balance the rest by inspection:

$$2H_2O + MnO_4^- + C_2O_4^{-2} \rightarrow MnO_2 + 6CO_3^{2-} + 4H^+ + 7 - 3 + 4 + 4$$

Balancing ½ electron method in Acid/Base medium

- 1. Divide equation into two ½ equation: an oxidation and a reduction
- 2. Balance all other atoms other than H/O
- 3. Balance O using H₂O
- 4. Balance H using H⁺
- 5. Balance changes using e's
- 6. Balance e's using multiplication factor (in both equations)
- 7. Add the two $\frac{1}{2}$ equations.

8.

[Easy way to remember this: My Wallaby Hurls Eggs
Mass Water Hydgrogen Electrons]

Example: balance the following in acid medium: $MnO_4^{-1} + H_2O_2 \rightarrow Mn^{2+} + O_2$

Standard Electrode Potentials, E°

These are relative values. They are always compared to the Hydrogen Electrode Potential

Definition: E° is defined as the potential difference between a standard half-cell and the

standard hydrogen half-cell. Note: the hydrogen half-cell has an electrode

potential of zero and an equation is : $H^{+1} + e^{-} \rightarrow \frac{1}{2} H_2$

There are three types of Half-Cells:

1. metal dipping into a solution of its ions, Zn / Zn²⁺

2.a gas in contact with an inert electrode

3. An inert metal in contact with a solution containing ions in two different oxidation states, e.g. $Pt_{(s)} | Fe / Fe^{2+}$

[In the drawing of an electrochemical cell, remember to use an inert electrode for gases and ion/ion solutions; example for the hydrogen half-cell: $Pt_{(s)}|H_{2(g)}$, $|H^{+}_{(aq)}(1.0)mol/L$)]

Cell Notation:

Anode | anode electrolyte || cathode electrolyte |cathode

Factors Affecting E°

E° is an intensive property, i.e. it is independent of the physical dimensions of the cell.

A change in conditions produces a charge in electrode potential.

They will be changed by

1. Pressure of gases

2. Temperature

Concentrations of ions

pH of solutions

ligands present

How to Predict whether a redox rxn will happen, i.e. spontaneous or non-spontaneous?

- 1. The bigger E° , i.e. the more positive value will proceed in the direction \rightarrow The lower E° will have to be reversed, i.e. \leftarrow
- 2. Multiply each of the equations by 'n' to balance electrons in both equations, but **do not** multiply the E° value by the factor 'n'
- 3. Add the 2 equations
- 4. If the E° determined for the overall equation is **positive**, then the reaction will occur = **spontaneous** (> 0.4)
 - If the determined overall E° is **negative**, then the reaction will not occur \rightarrow **non-spontaneous**

E° positive: products predominant

The feasibility of a Rxn:

Standard free energy change ΔG° must be negative for a chemical reaction to occur.

$$\Delta G^{\circ} = -nFE^{\circ}$$

- n= number of electrons transferred
 - F= Faradays constant = 964951
 - E° = electrode potential value

For a reaction to be feasible: E° = positive

$$\Delta G^{\circ}$$
 = negative

Property	ΔG°	E°
Spontaneous (ECC)	-	+
Non-spontaneous	+	-
Equilibrium	0	0

Electrolysis

$$Na^{+} + e^{-} \rightarrow Na_{(s)}$$

 $2C1^{-} \rightarrow Cl_{2(g)} + e^{-}$

$$Na^+ + 2 Cl^- \rightarrow Na + Cl_2$$
 E°= - 4.0 V .: Non-Spontaneous

Summary

Cell Type Electrochemical Cell (battery)	Electrode Anode Cathode	Function oxidation reduction	Polarity of electrode - +
Electrolysis	Anode Cathode	oxidation reduction	+

Electrolysis of Aqueous Solution

Reduction of
$$H_2O$$
 2 $H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$ E ° = -0.83 V
Oxidation of H_2O 6 $H_2O \rightarrow O_2 + 4H_3O^+ + 4 e^-$ E ° = -1.23 V

Generally:

1. if a substance has a reduction potential less negative (i.e. more +ve) than -0.83V (for H_2O) then the substance will be reduced (e.g. $Cu^{+2} + 2e^{-} \rightarrow Cu^{-} + 0.34 \text{ yes}$)

$$Na^+ + e^- \rightarrow Na$$
 -2.71 no)

- 2. Metals higher in the electrochemical series are difficult to reduce in aqueous solution
- 3. Metals lower down in the electrochemical series are discharged preferentially
- 4. Order of discharge of ions: $SO_4^{-2} \rightarrow NO_3 \rightarrow Cl^- \rightarrow OH^- \rightarrow Br^- \rightarrow \Gamma$
- \Rightarrow increasing tendency to discharge 5. Concentration of solution H₂ or Cl₂ oxidation: H₂O \Rightarrow O₂ -1.23
- e.g. Dilute NaCl / concentration NaCl (i.e.Brine) $Cl^{-} \rightarrow Cl_{2}$ $\frac{-1.36}{0.03V}$

Effect of Electrodes on Electrolysis

Products of electrolysis also depend on the nature of electrode. Consider the electrolysis of copper (II) chloride solution:

		Catnode	Anoae
CuCl _{2(aq)}	Inert electrode	$Cu_{(s)}$	Cl_2/O_2
	Cu Electrodes	Cu	Cu anode dissolves

Quantitative Aspects of Electrolytic Cells

$$C = I \cdot t$$

Faraday Constant: Charge carried by 1 mol of electrons = 96485 C/ mol

$$\frac{1 \text{ mol e}^{-}}{\text{n mol e}^{-}} = \frac{96485 \text{ C (1F)}}{\text{C}}$$

Coulombs= n mol
$$e^-$$
 (96485 \rightarrow 1F)

Number of mol
$$e^- = \frac{\text{coulombs}}{\text{Faraday}} = \frac{C}{F}$$

Ex: What mass of Cr is deposited when a current of 2.05 A is passed for 1.00 h through a solution of chromium (III) sulphate?

Nernst Equation

The Nernst Equation gives the variation of electrode potential with concentration.

$$E = E^{\circ} - RT \ln Q$$

$$E = E^{\circ} - 0.0257 \ln Q$$

$$Fe_{(s)} + Cu^{+2}_{(aq)} \iff Fe^{+2}_{(aq)} + Cu_{(s)}$$

Then, the forward reaction will be favoured, thus increasing the electrode potential, $E \uparrow$

If the concentration of [Fe⁺²] is increased, the reverse reaction if favoured, thus decreasing the value of the electrode potential.

Nernst Equation and the Equilibrium Constant

At Equilibrium,
$$E = 0$$

$$0= E^{\circ} - \frac{0.257}{n} \ln Q$$

$$0 = E^{\circ} - \frac{0.0257}{n} \ln K$$

$$\ln K = \underline{nE^{\circ}}$$

$$0.0257$$

$$\mathbf{K} = \mathbf{e}^{\frac{\mathbf{n}\mathbf{E}^{\circ}}{0.0257}}$$