ANSWERS: EXAM REVIEW

SCH3U_2010-2011

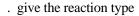
Answers to Multiple Choice

1	2	3	4	5	6	7	8	9	10
C	D	С	A	D	D	A	С	С	C
11	12	13	14	15	16	17	18	19	20
В	С	D	A	С	A	В	D	Е	D
21	22	23	24	25	26	27	28	29	30
A	Е	A	D	В	Е	D	В	С	В
31	32	33	34	35	36	37	38	39	40
C	D	D	A	В	С	Е	В	A	В
41	42	43	44	45	46	47	48	49	50
A	A	D	С	В	С	С	D	D	C
51	52	53	54	55	56	57	58	59	60
A	D	В	В	В	D	D	В	A	D
61	62	63	64						
D	В	D	C						

Answers to Problems

1.

- 2. Using the periodic table, explain the following:
- a. Why potassium is more reactive than sodium
- b. Why noble gases are assigned a value of zero for electronegativity.
- c. Why silicon has a higher ionization energy than sodium.
- d. Explain how first ionization energy is related to atomic radius.
- e. Why aluminium has a higher ionization energy than gallium.
- f. Why sodium ion is smaller than the sodium atom.
- g. Why P⁻³ ion is larger than P atom.


3. For each of the following molecules:

- a. Draw the Lewis structure.
- b. State the name of the 3–D shape

Answer # 3

Molecule	Lewis structure	3-D Shape
CF ₄		tetrahedral
PH ₃		pyramidal
PH ₂ -1		non-linear
PH ₄ +1,		tetrahedral
H ₂ Te		non-linear
BF ₃		triangular planar
BeCl ₂		linear
SO ₂		non-linear

4. For each of the following:

- give a balanced equation

- give phases for each substance

- state the precipitate

- write a total dissociated equation

- write a net-ionic equation

- a. Magnesium sulfate reacts with ammonium hydroxide
- b. Lead (II) nitrate solution reacts with sodium iodide solution
- c. Acetic acid reacts with sodium hydroxide.
- d. Strontium chloride reacts with potassium phosphate.
- e. Potassium hydroxide reacts with sulphuric acid.

- An organic compound was found by analysts to contain 40.45% C; 7.86% H and 15.73% N. The remainder was an element commonly found in nature and all organic acids ... like acetic acid. (Think !!!)
 - A separate experiment determined the molecular mass of the compound to be 89.0g mol⁻¹.
- (a) Determine the empirical formula of the compound.
- (b) What is the molecular formula of the compound?

Answer # 5

- a. Empirical Formula: C₃H₇NO₂
- b. Molecular Formula: $C_3H_7NO_2$
- 6. Tin (II) iodide, SnI_2 , can be prepared by adding a solution of potassium iodide, $KI_{(aq)}$ to a solution of tin (II) chloride, $SnCl_{2(aq)}$, and precipitating the insoluble iodide.
 - 2.280 g of SnCl₂ were dissolved in 25.0 cm³ of water and mixed with 10.0 cm³ of 1.40 mol L⁻¹ KI (aq) to precipitate the tin (II) iodide.
- (i) Write a balanced equation for the reaction of SnCl_{2(aq)} with KI (aq).
- (ii) Determine the number of mols of each reactant.
- (iii) Determine which of the reagents is present in excess and which reagent is the limiting reagent.
- (iv) Calculate the maximum mass of tin (II) iodide that could be formed
- (v) In an experiment carried out as described above, 1.89 g of tin (II) iodide was obtained. Determine the percentage yield.

- (iii) Limiting reagent: KI Excess reagent: SnCl₂
- (iv) The maximum mass of tin (II) iodide that could be formed: 2.61 g
- (v) % yield = 72.4 %
- 7. A 0.496 g of an unknown hydrocarbon, (a compound containing just carbon and hydrogen) was completely burned in oxygen. The sample produced 1.5 6 g of carbon dioxide and 0.638 g of water.
- (a) (i) How many moles of carbon dioxide were formed?
 - (ii) How many moles of water were formed?
 - (iii) What is the empirical formula of the hydrocarbon?
- (b) A 1.12 g sample of the hydrocarbon occupied 448 cm³ at 0 °C and 101.3 kPa pressure. What is the molecular mass of the compound? (1.00 mol of any gas occupies 22.4 L at 0°C and 101.3 kPa, a.k.a.: STP)
- (c) What is the molecular formula of the compound?

Answer # 7

ล

i. moles of carbon dioxide were formed = 0.03545

ii. many moles of water were formed = 0.03545

(.: mols of hydrogens in the hydrocarbon = $2 \times 0.03545 = 0.0709$)

iii. empirical formula of the hydrocarbon $= CH_2$

b. molecular mass of the compound $= 56.0 \text{ g mol}^{-1}$

c. molecular formula of the compound = $4 (CH_2) = C_4H_8$

8. Lead (II) nitrate, Pb(NO₃)₂, reacts with sodium iodide, NaI. One of the products is a yellow precipitate. How much precipitate would be produced if 6.00 g of sodium iodide was used with sufficient NaI?

Answer #8

9. If hydrogen gas occupies 44. 8 L at STP, at what pressure will the sample occupy 112 L when the temperature is fixed at 30° C?

Answer # 9: Pressure of the gas = 45 kPa

What is the volume occupied by 4.4 g carbon dioxide gas at a temperature of 30.0 °C and a pressure of 99.6 kPa?

Answer # 10: Volume occupied by the gas = 2.53 L

11. What is the density of sulphur dioxide gas, SO₂, if 6.40 g exerts a pressure of 98.8 kPa at a temperature of 23.5 °C?

Answer # 11: Density of sulphur dioxide gas = 2.50 g / L

12. Calcium oxide, CaO, reacts with carbon dioxide to produce calcium carbonate, CaCO₃. If 10.0 L of carbon dioxide at 5.00 °C and 121.2 kPa reacts with the calcium oxide, what mass of calcium carbonate will be produced?

Answer # 12

CaO + CO₂
$$\longrightarrow$$
 CaCO₃
Mass of calcium carbonate that will be produced = 52.4 g

13. What mass of sodium phosphate, Na_3PO_4 , was used to produce 250 mL of 0.100 mol/L solution? **Answer # 13** mass of sodium phosphate, Na_3PO_4 , used = 4.10 g

14. A 145.0 mL sample of sulphuric acid reacts completely with zinc metal to produce 125.0 mL of hydrogen gas at 22.0 °C and a pressure of 102.3 kPa.

What is the molar concentration of the sulphuric acid?

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

 $mol\ (H_{2(g)}) = mol\ H_2SO_4 = 5.214 \ x\ 10^{-3}$
 $molar\ concentration\ of\ the\ sulphuric\ acid\ =\ 0.0360\ mol\ /\ L$

- Tums, essentially calcium carbonate, CaCO₃, on the market are sold as an antacid. A tablet of Tums was crushed and reacted with hydrochloric acid, HCl_(aq). 28.50 mL of 0.200 mol L⁻¹ hydrochloric acid was required to completely neutralize one of the Tums tablet.
- a. Write a balanced equation for the reaction of the Tums tablet, $(CaCO_{3(s)})$ with hydrochloric acid, $HCl_{(aa)}$.
- b. Write a net-ionic equation.
- c. Determine the mols of hydrochloric acid consumed.
- d. Determine the mols of Tums consumed.
- e. Determine the mass of the $CaCO_{3(s)}$ in each of the Tums tablet.

Answer # 15

- a. $CaCO_{3(s)} + 2 HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$
- b. $CaCO_{3(s)} + 2 H^{+1}_{(aq)} \longrightarrow Ca^{+2} + 2Cl^{-1}_{(aq)} + CO_{2(g)} + H_2O_{(l)}$
- c. mols of hydrochloric acid consumed = 5.70×10^{-3}
- d. mols of Tums consumed = $\frac{1}{2}$ 5.70 x 10⁻³ = 2.85 x 10⁻³
- e. mass of the $CaCO_{3(s)}$ in each of the Tums tablet = 0.285 g
- 16. How much 15.4 mol/L nitric acid is needed so that the dilution results in 150 mL of 0.200 mol/L solution of the nitric acid.

Answer # 16: Volume of 15.4 mol/L nitric acid needed = 1.95 mL

17. A chemist makes nitroglycerin, $C_3H_5(NO_3)_3$ from glycerol $C_3H_5(OH)_3$ and HNO_3 . The balanced chemical reaction is listed below:

$$C_3H_5(OH)_{3(1)} + 3 HNO_{3 (aq)} \longrightarrow C_3H_5(NO_3)_{3 (1)} + 3 H_2O_{(1)}$$

- If 4.1 g of glycerol and 13.5 g of HNO₃ are used to produce 8.80 g of nitroglycerin:
- a. What is the limiting reagent?
- b. What is the theoretical yield of nitroglycerin?
- c. What is the actual yield of nitroglycerin?
- d. What is the percentage yield of nitroglycerin?

Answer # 17

- A. the limiting reagent = $C_3H_5(OH)_{3(1)}$
- B. theoretical yield of nitroglycerin = 10.1 g
- C. actual yield of nitroglycerin = 8.80 g
- D. percentage yield of nitroglycerin = 87.1 %
- 18. If 26.55 mL of LiOH are required to neutralize 21.70 mL of 0.500 mol/L HBr_(aq) what is the concentration of the base?

$$\begin{array}{cccc} LiOH_{(aq)} & + & HBr_{(aq)} & \longrightarrow & LiBr_{(aq)} & + & H_2O_{(l)} \\ Concentration \ of \ the \ base, \ LiOH_{(aq)} & = & 0.409 \ mol \ / \ L \end{array}$$

19. How many grams of table sugar $C_{12}H_{22}O_{11}$ are contained in 50.0 mL of a 0.400 mol/L solution of sugar in water?

Answer # 19 Grams of table sugar $C_{12}H_{22}O_{11} = 6.84 \text{ g}$

What is the molar mass of a vapour, 0.842 g of which occupies 450 mL at a pressure of 100 kPa and a temperature of 100 °C?

Answer # 20 Molar mass of the vapour = 58.0 g mol⁻¹

How many litres of hydrogen gas at 23.0EC and 103.0 kPa can be obtained by the reaction of 75.0 g of aluminium with excess sulfuric acid?

$$2 \text{ Al(s)} + 3 \text{ H}_2 \text{SO}_4(\text{aq}) \longrightarrow \text{Al}_2(\text{SO}_4)_3(\text{aq}) + 3 \text{ H}_2(\text{g})$$

Answer # 21

mol(Al) = 2.777 .: $mol(H_2) = 4.1666$ using PV = nRT volume of $H_2 = 99.6$ L

22. A gas occupies 0.045 L at 240K and 100 kPa. When the pressure is changed, the volume becomes 0.015 L at a temperature of 300K. What is the new pressure?

Answer # 22

Using: $P_1V_1/T_1 = P_2V_2/T_2$ The new pressure = 375 kPa

8.0 L of a gas is kept at constant pressure. The temperature is changed to 580 K, and the gas now occupies 20.0 L. What was the initial temperature?

Answer # 23

The initial temperature: 232 K

A gas occupies 1.0 L container at 20 °C and 50.0 kPa, it is transferred into a 250 mL container and is subjected to a pressure of 200.0 kPa, what will be the new temperature of the gas?

Answer # 24

The new temperature of the gas = 293 K = $20 \, ^{\circ}\text{C}$