ANSWERS: YEAR — END REVIEW

SCH3UE_07-08

1	2	3	4	5	6	7	8	9	10
С	D	С	А	D	D	А	С	С	С
11	12	13	14	15	16	17	18	19	20
В	С	D	А	С	А	В	D	Е	D
21	22	23	24	25	26	27	28	29	30
А	Е	А	D	В	Е	D	В	С	В
31	32	33	34	35	36	37	38	39	40
С	D	D	А	В	С	Е	В	А	В
41	42	43	44	45	46	47	48	49	50
А	А	D	С	В	С	С	D	D	С
51	52	53	54	55	56	57	58	59	60
А	D	В	В	С	В	А	В	А	D
61	62	63	64	65					
А	D	D	В	С					

Answers to Multiple Choice

Answers to Problems

1. a. Mn		ne electron confi b. Br	•	h of the followin d. Fe ⁺³	e. P ⁻³	f. S ⁻²	Mg. Co ⁺²
Answ a.		Ar] $3d^5 4s^2$					
b.	Br:	$[Ar] 3d^{10} 4s^2$	4p ⁵				
C.	S:	[Ne] $3s^2 3p^3$					
d.	Fe ⁺³ :	[Ar] 3d ⁵					
e.	P ⁻³ :	$1s^2 2s^2 2p^6 3s^2$	2 3p ⁶		(Note: P ⁻³ and S	⁻² are isoelect	ronic)

- f. S^{-2} : $1s^2 2s^2 2p^6 3s^2 3p^6$
- g. Co^{+2} : [Ar] $3d^7$

2. Using the periodic table, explain the following:

a. Why potassium is more reactive than sodium

b. Why noble gases are assigned a value of zero for electronegativity.

c. Why silicon has a higher ionization energy than sodium.

d. Why aluminium has a lower ionization energy than magnesium.

e. Why aluminium has a higher ionization energy than gallium.

- f. Why sodium ion is smaller than the sodium atom.
- g. Why P⁻³ ion is larger than P atom.
- 3. For each of the following molecules:

 CF_4 , PH_3 , PH_2^{-1} , PH_4^{+1} , H_2Te , BF_3 , $BeCl_2$, SO_2

a. Draw the Lewis structure. b. State the name of the 3– D shape

c. State and explain if the molecule is polar and or non-polar.

d. State and explain the type of IMFA's experienced by each molecule.

Molecule	Lewis structure	3-D Shape	Polar/ Non-polar	Type of IMFA
CF ₄		tetrahedral	non-polar	LDF, (van-der-Waal)
PH ₃		pyramidal	polar	D-D
PH2 ⁻¹		non-linear	polar	D-D
PH ₄ ⁺¹ ,		tetrahedral	non-polar	LDF, (van-der-Waal)
H ₂ Te		non-linear	polar	D-D
BF ₃		triangular planar	non-polar	LDF, (van-der-Waal)
BeCl ₂		linear	non-polar	LDF, (van-der-Waal)
SO ₂		non-linear	polar	

Answer

- 4. For each of the following:
- . give the reaction type
- give a balanced equation
- give phases for each substance
- state the precipitate
- write a total dissociated equation
- write a net-ionic equation
- a. Magnesium sulfate reacts with ammonium hydroxide
- b. Lead (II) nitrate solution reacts with sodium iodide solution
- c. Acetic acid reacts with sodium hydroxide.
- d. Strontium chloride reacts with potassium phosphate.
- e. Potassium hydroxide reacts with sulphuric acid.

Answer

- a. $\begin{array}{cccc} MgSO_{4(aq)} &+& 2 NH_4OH_{(aq)} &\longrightarrow Mg(OH)_{2(s)} &+ (NH_4)_2SO_{4(aq)} \\ Mg^{+2}{}_{(aq)} &+& 2 OH^{-1}{}_{(aq)} &\longrightarrow Mg(OH)_{2(s)} \end{array}$
- b. $Pb(NO_3)_{2(aq)} + 2 \text{ NaI}_{(aq)} \longrightarrow PbI_{2(s)} + 2 \text{ NaNO}_{3(aq)}$ $Pb^{+2}_{(aq)} + 2 I^{-1}_{(aq)} \longrightarrow PbI_{2(s)}$
- c. $CH_3COOH_{(aq)} + NaOH_{(aq)} \longrightarrow CH_3COONa_{(aq)} + H_2O_{(l)}$ $H^{+1}_{(aq)} + OH^{-1}_{(aq)} \longrightarrow H_2O_{(l)}$
- d. $3\operatorname{SrCl}_{2(\operatorname{aq})} + 2\operatorname{K}_{3}\operatorname{PO}_{4(\operatorname{aq})} \xrightarrow{\longrightarrow} \operatorname{Sr}_{3}(\operatorname{PO}_{4})_{2(\operatorname{s})} + 6\operatorname{KCl}_{(\operatorname{aq})}$ $3\operatorname{Sr}^{+3}_{(\operatorname{aq})} + 2\operatorname{PO}_{4}^{-3}_{(\operatorname{aq})} \xrightarrow{\longrightarrow} \operatorname{Sr}_{3}(\operatorname{PO}_{4})_{2(\operatorname{s})}$
- e. $2 \operatorname{KOH}_{(aq)} + \operatorname{H}_{2}\operatorname{SO}_{4 (aq)} \longrightarrow \operatorname{K}_{2}\operatorname{SO}_{4 (aq)} + 2 \operatorname{H}_{2}\operatorname{O}_{(l)}$ $\operatorname{OH}^{-1}_{(aq)} + \operatorname{H}^{+1}_{(aq)} \longrightarrow \operatorname{H}_{2}\operatorname{O}_{(l)}$
- 5. An organic compound was found by analysts to contain 40.45% C; 7.86% H and 15.73% N. The remainder was an element commonly found in nature and all organic acids ... like acetic acid. (Think !!!)

A separate experiment determined the molecular mass of the compound to be 89.0g mol⁻¹.

- (a) Determine the empirical formula of the compound.
- (b) What is the molecular formula of the compound?

Answer

- a. Empirical Formula: $C_3H_7NO_2$ b. Molecular Formula: $C_3H_7NO_2$
- 6. Tin (II) iodide, SnI_2 , can be prepared by adding a solution of potassium iodide, $KI_{(aq)}$ to a solution of tin (II) chloride, $SnCl_{2(aq)}$, and precipitating the insoluble iodide.

2.280 g of SnCl₂ were dissolved in 25.0 cm³ of water and mixed with 10.0 cm³ of 1.40 mol L⁻¹ KI (aq) to precipitate the tin (II) iodide.

- (i) Determine which of the reagents is present in excess.
- (ii) Calculate the maximum mass of tin (II) iodide that could be formed
- (iii) In an experiment carried out as described above, 1.89 g of tin (II) iodide was obtained. Determine the percentage yield.

Answer

- (i) Limiting reagent : KI Excess reagent: SnCl₂
- (ii) The maximum mass of tin (II) iodide that could be formed: 2.61 g
- (iii) % yield = 72.4 %

- 7. A 0.496 g of an unknown hydrocarbon, (a compound containing just carbon and hydrogen) was completely burned in oxygen. The sample produced 1.5 6g of carbon dioxide and 0.638g of water.
- (a) (i) How many moles of carbon dioxide were formed?
 (ii) How many moles of water were formed?
 (iii) What is the empirical formula of the hydrocarbon?
- (b) A 1.12 g sample of the hydrocarbon occupied 448 cm³ at 0 °C and 101.3 kPa pressure. What is the molecular mass of the compound? (1.00 mol of any gas occupies 22.4 L at 0°C and 101.3 kPa, a.k.a.: STP)
- (c) What is the molecular formula of the compound?

Answer

- a.
- i. moles of carbon dioxide were formed = 0.03545
- ii. many moles of water were formed = 0.03545
- (.: mols of hydrogens in the hydrocarbon = $2 \times 0.03545 = 0.0709$)
- iii. empirical formula of the hydrocarbon = CH_2

b.	molecular mass of the compound	=	56.0 g mol ⁻¹
c.	molecular formula of the compound	=	$4 (CH_2) = C_4 H_8$

8. Lead (II) nitrate, $Pb(NO_3)_2$, reacts with sodium iodide, NaI. One of the products is a yellow precipitate. How much precipitate would be produced if 6.00 g of sodium iodide was used with sufficient NaI?

Answer

 $Pb(NO_3)_{2(aq)} + 2 NaI_{(aq)} \longrightarrow PbI_{2(s)} + 2 NaNO_{3(aq)}$ Mass of precipitate, $(PbI_{2(s)})$, formed = 9.22 g

- 9. If hydrogen gas occupies 44. 8 L at STP, at what pressure will the sample occupy 112 L when the temperature is fixed at 30 °C ?
- **Answer**: Pressure of the gas = 45 kPa
- 10. What is the volume occupied by 4.4 g carbon dioxide gas at a temperature of 30.0 °C and a pressure of 99.6 kPa?

Answer: Volume occupied by the gas = 2.53 L

11. What is the density of sulphur dioxide gas, SO_2 , if 6.40 g exerts a pressure of 98.8 kPa at a temperature of 23.5 °C ?

Answer: Density of sulphur dioxide gas = 2.50 g / L

12. Calcium oxide, CaO, reacts with carbon dioxide to produce calcium carbonate, CaCO₃. If 10.0 L of carbon dioxide at 5.00 °C and 121.2 kPa reacts with the calcium oxide, what mass of calcium carbonate will be produced?

Answer

CaO + $CO_2 \longrightarrow CaCO_3$ Mass of calcium carbonate that will be produced = 52.4 g 13. What mass of sodium phosphate, Na_3PO_4 , was used to produce 250 mL of 0.100 mol/L solution? **Answer** mass of sodium phosphate, Na_3PO_4 , used = 4.10 g

A 145.0 mL sample of sulphuric acid reacts completely with zinc metal to produce 125.0 mL of hydrogen gas at 22.0 °C and a pressure of 102.3 kPa.
 What is the molar concentration of the sulphuric acid?

Answer

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$ mol (H_{2(g)}) = mol H₂SO₄ = 5.214 x 10⁻³ molar concentration of the sulphuric acid = 0.0360 mol / L

- 15. Tums, essentially calcium carbonate, $CaCO_3$ on the market are sold as an antacid. A tablet of Tums was crushed and reacted with hydrochloric acid, $HCl_{(aq)}$. 28.50 mL of 0.200 mol L⁻¹ hydrochloric acid was required to completely neutralize one of the Tums tablet.
- a. Write a balanced equation for the reaction of the Tums tablet, $(CaCO_{3(s)})$ with hydrochloric acid, $HCl_{(aq)}$.
- b. Write a net-ionic equation.
- c. Determine the mols of hydrochloric acid consumed.
- d. Determine the mols of Tums consumed.
- e. Determine the mass of the $CaCO_{3(s)}$ in each of the Tums tablet.

Answer

a. $CaCO_{3(s)} + 2 HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$

b.
$$\operatorname{CaCO}_{3(s)} + 2 \operatorname{H}^{+1}_{(aq)} \longrightarrow \operatorname{Ca}^{+2} + 2\operatorname{Cl}^{-1}_{(aq)} + \operatorname{CO}_{2(g)} + \operatorname{H}_2\operatorname{O}_{(l)}$$

- c. mols of hydrochloric acid consumed = 5.70×10^{-3}
- d. mols of Tums consumed = $\frac{1}{2}$ 5.70 x 10⁻³ = 2.85 x 10⁻³
- e. mass of the CaCO_{3(s)} in each of the Tums tablet = 0.285 g
- 16. How much 15.4 mol/L nitric acid is needed so that the dilution results in 150 mL of 0.200 mol/L solution of the nitric acid.

Answer: Volume of 15.4 mol/L nitric acid needed = 1.95 mL

17. A chemist makes nitroglycerin, $C_3H_5(NO_3)_3$ from glycerol $C_3H_5(OH)_3$ and HNO_3 . The balanced chemical reaction is listed below:

 $C_{3}H_{5}(OH)_{3(l)} + 3 HNO_{3 (aq)} \longrightarrow C_{3}H_{5}(NO_{3})_{3 (l)} + 3 H_{2}O_{(l)}$

If 4.1 g of glycerol and 13.5 g of HNO₃ are used to produce 8.80 g of nitroglycerin:

- a. What is the limiting reagent?
- b. What is the theoretical yield of nitroglycerin?
- c. What is the actual yield of nitroglycerin?
- d. What is the percentage yield of nitroglycerin?

Answer

- A. the limiting reagent = $C_3H_5(OH)_{3(l)}$
- B. theoretical yield of nitroglycerin = 10.1 g
- C. actual yield of nitroglycerin = 8.80 g
- D. percentage yield of nitroglycerin = 87.1 %

18. If 26.55 mL of LiOH are required to neutralize 21.70 mL of 0.500 mol/L HBr_(aq) what is the concentration of the base?

Answer

 $\text{LiOH}_{(aq)} + \text{HBr}_{(aq)} \longrightarrow \text{LiBr}_{(aq)} + \text{H}_2\text{O}_{(l)}$ Concentration of the base, $\text{LiOH}_{(aq)} = 0.409 \text{ mol} / \text{L}$

19. How many grams of table sugar $C_{12}H_{22}O_{11}$ are contained in 50.0 mL of a 0.400 mol/L solution of sugar in water?

Answer Grams of table sugar $C_{12}H_{22}O_{11} = 6.84$ g

20. What is the molar mass of a vapour, 0.842 g of which occupies 450 mL at a pressure of 100 kPa and a temperature of 100 °C?

Answer Molar mass of the vapour = 58.0 g mol^{-1}

21. How many litres of hydrogen gas at 23.0°C and 103.0 kPa can be obtained by the reaction of 75.0 g of aluminium with excess sulfuric acid?

 $2 \operatorname{Al}(s) + 3 \operatorname{H}_2 \operatorname{SO}_4(aq) \longrightarrow \operatorname{Al}_2(\operatorname{SO}_4)_3(aq) + 3 \operatorname{H}_2(g)$

Answer

mol(Al) = 2.777 .: $mol(H_2) = 4.1666$ using PV = nRT volume of H₂ = 99.6 L

22. A gas occupies 0.045 L at 240K and 100 kPa. When the pressure is changed, the volume becomes 0.015 L at a temperature of 300K. What is the new pressure?

Answer

Using: $P_1V_1/T_1 = P_2V_2/T_2$ The new pressure = 375 kPa

23. 8.0 L of a gas is kept at constant pressure. The temperature is changed to 580 K, and the gas now occupies 20.0 L. What was the initial temperature?

Answer

The initial temperature : 232 K

24. A gas occupies 1.0 L container at 20 °C and 50.0 kPa, it is transferred into a 250 mL container and is subjected to a pressure of 200.0 kPa, what will be the new temperature of the gas?

Answer

The new temperature of the gas = 293 K = $20 \text{ }^{\circ}\text{C}$