Chemistry Review Questions Cassia Snyder

Grade 10 Nomenclature and Balancing Equations

Oxidation Numbers

What is the oxidation number of:

 a) U in UCl₃
 U=+3
 b) Sn in SnS₂
 Sn=+4
 c) S in SO₄⁻²
 4(-2) + S = -2
 S=+6
 d) C in CO₃²⁻
 C + 3(-2)= -2
 C=+4

Nomenclature of Binary Ionic Compounds

2. Name the following (all possibilities):
a) FeCl₃
Ferric chloride or Iron (III) chloride
b) MgO
Magnesium oxide
c) CuBr
Copper (I) bromide or Cuprous bromide
d) LiF
Lithium fluoride
e) VCl₅
Vanadium (V) chloride

3. Write the chemical formula for the following:
a) Copper (II) bromide
CuBr₂
b) Ferrous oxide
FeO
c) Calcium chloride
CaCl₂
d) Lead (IV) sulfide
PbS₂
e) Barium phosphide

 Ba_3P_2

Nomenclature of Binary Covalent Compounds

4. Name the following (all possibilities):
a) CO₂
Carbon dioxide
b) CH₄
Methane or Carbon tetrahydride
c) N₂O₃
Dinitrogen trioxide
d) BCl₃
Barium trichloride

5. Write the chemical formula for the following:

a) Dihydrogen monoxide

 H_2O

b) Silicon Dioxide

SiO₂

c) Sulfur hexafluoride

 SF_6

Nomenclature of Compounds with Polyatomic Ions

6. Name the following (all possibilities):

a) $Pb(HCO_3)_4$

Lead (IV) bicarbonate or Plumbic bicarbonate or Lead (IV) hydrogen carbonate or Plumbic hydrogen carbonate b) Fe(HSO₃)₃

Iron (III) bisulphite or Ferric bisulphite or Iron (III) hydrogen sulfite or Ferric (III) hydrogen sulfite

c) MnSO₄

Manganese (II) sulfate

d) MgSO₄ \Box 7H₂O

Magnesium sulfate heptahydrate

7. Write the chemical formula for the following:

a) Cupric chloride trihydrate

 $CuCl_2 \ge 3H_2O$

b) Potassium nitrite

 KNO_2

c) Calcium phosphate

 $Ca_{3}(PO_4)_2$

d) Sodium permanganate NaMnO₄

Nomenclature of Binary and Oxyacids

8. Name the following (all possibilities):

a) $H_2SO_{4(aq)}$

Sulphuric (VI) acid or Sulphuric acid

b) $HCl_{(aq)}$ Hydrochloric acid c) $HBr_{(aq)}$ Hydrobromic acid d) $H_3PO_{4(aq)}$ Phosphoric acid or Phosphoric (IV) acid e) $H_3AsO_{5(aq)}$ Arsenic acid or Arsenic (VII) acid

9. Write the chemical formula for the following:

a) Bromic acid
HBrO_{3(aq)}
b) Nitric acid
HNO_{3(aq)}
c) Hydroiodic acid
HI_(aq)
d) Acetic acid
CH₃COOH_(aq)

Balancing Chemical Equations

- 10. Completely balance each equation and say what type of reaction it is:
- a) **3** $O_2 + 4Al \rightarrow 2Al_2O_3$
- b) $3MnSO_4 + 2Fe \rightarrow Fe_2(SO_4)_3 + 3Mn$
- c) $2Na + H_2O \rightarrow 2NaOH + H_2$

Reactivity Series

11. Metals A B C and D are observed in a reaction with the solutions: $A(NO_3) B(NO_3) C(NO_3)$ and $D(NO_3)$. The results are as follows:

- Metal C reacts with none of the solutions
- Metal D reacts with $A(NO_3)$ and $C(NO_3)$
- Metal B reacts with D(NO₃)
- Metal E reacts with A and C but not with D(NO₃)

What is the reactivity series order?

The reactivity order is B D E A C. C is the least reactive because it reacts with none of the acids. B is the most reactive because it reacts with D which is less reactive. D is next because it reacts with both A and C. Then E because it reacts with A and C but not B and D.

Quantities in Chemistry

Moles

1. What is the value of one mole (N_A) ? 6.02x10²³particles

2. For 3.00 moles of Ca, how many atoms? N=nNa

N=(3.00)(6.02x10²³) N=1.81x10²⁴atoms

3. How many moles are there when given 1.56×10^{22} atoms of H₂O? N=nNa $(1.56 \times 10^{22})=n(6.02 \times 10^{23})$ 2.59x10⁻²mol=n

4. When given 8.77 moles of Iron, what are the number of atoms? N= $(8.77)(6.02x10^{23})$ N= $5.27954x10^{24}$ atoms

5. What is the mass of aluminium when given 8.00moles? m=nM m=(8.00)(26.981538) m=216g

6. What is the mass of potassium when given 4.87 moles of the K metal? m=nM m=(4.87)(39.0983) m=190.41g

7. How many moles of lead in are there in 7.66g of lead metal? n=m/M n=(7.66)/(207.2) n=0.0371mol

8. How many moles are there in 2.35g of lithium? n=m/M n=(2.35)/(6.941) n=0.339mol

Percentage Composition

9. Calculate the percentage composition of N in NH₄NO₃
%composition=2N/M
%composition=2(14.00674)/80.0432
%composition= 35.0%

10. Calculate the percentage composition of N in (NH₄)₂CO₃ %composition= 2N/M %composition= 2(14.00674)/96.0858 %composition=29.1%

11. Calculate the percentage composition of N in $((NH_4)_3PO_4)$ %composition=3N/M

%composition=3(14.00674)/149.08626 %composition=28.3%

Empirical Formula

12. Determine the empirical formula when given 63.0% carbon, 3.3% hydrogen and 8.2% nitrogen and 25.5% oxygen Let 100% = 100gSo.... 3.3g of carbon, 63.0g of hydrogen, 8.2g of nitrogen and 25.5g of oxygen Change g to mol: n=(63.0)/(12.0107)n=(3.3)/(1.0079)n=(8.2)/(14.00674) n=(25.5)/(15.9994)n =3.374mol n=1.5938 n=5.2453 mol n=0.5854mol Divide each one by the smallest 5.2453/0.5854 3.374/0.5854 1.5938/0.5854 0.5854/0.5854 =8.960 =5.764 =1=2.723Therefore the empirical formula would be C₉H₆NO₃

13. What is the molecular formula when given 7.88g of S and 13.45g of O and their total molar mass is 260g/mol.

Change from g to mol n=7.88/32.066 n=13.45/15.9994 n=0.2457 n=0.8407Divide by the smallest 0.2457/0.2457 0.8407/0.2457 =1 =3.4217The empirical formula would be SO₃ To get molecular formula you have to find the multiple value Multiple value=molar mass given/molar mass empirical Multiple value=260/80.0642 Multiple value=3.247 So multiple SO₃ by 3 and then the molecular formula is S₃O₉

Stoichiometric Relationships

Mole to Mole Ratio

1. What mass of SO₃(g) is formed when excess Sulfur(g) is reacted with 3.45mol of Oxygen (g)? $2S(g) + 3O_2(g) \rightarrow 2SO_3(g)$ $O_2:SO_3$ 3.45: x 3.45: x 3.25 3x=6.9x=2.3mol

2. Calculate the mass of O_2 in 8.7mol of water in the following reaction: $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ $O_2:H_2O$ X:8.7 1 2 2x=8.7 x=4.35mol

LR vs XS Problems

3. Calculate in the following reaction: $3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$ 2Fe +0.889mol 0.789mol a) The LR b) The XS c) The number of moles in $FeCl_3$ d) The mass of FeCl₃ Find the LR using mol to mol ratio Fe: Cl₂ 0.889:0.789 -----2 3 0.4445 : 0.263 Therefore chlorine is the LR and iron is the excess Use the LR to find the number of moles in Iron (III) chloride Cl₂: FeCl₃ 0.789:x ---- ---3 2 3x=0.3945 x=0.1315 mol is the number of moles in FeCl₃ m=nM m=(0.1315)(162.2031) m=21.3g

4. Complete the following:

 $CaSO_4 + 2KOH \rightarrow Ca(OH)_2 + K_2SO_4$

A reaction took place where 0.456 mol of CaSO₄ reacted with 0.678 mol of KOH.

a) Calculate the mass of the XS reactant used

b) Calculate the percent yield if in an experiment 14.05g of K₂SO₄ was produced

c) Calculate the percent error if in an experiment 14.05g of $\rm K_2SO_4$ was produced CaSO_4:KOH

0.456:0.678

1 2 0.456:0.339 Therefore KOH is the LR and CaSO₄ is the excess LR:XS 0.678:x 2 1 2x=0.678 x=0.339XS remaining= XS initial-XS consumed = 0.456-0.339 = 0.117m=nM m=0.117(136.1116) m=15.93g PY=ex/theo x100 PY=14.05/15.93x100 PY=88.21% PE=theo-ex/theo x100

PE=15.93-14.05/15.93x100 PE=11.80%

Solution Chemistry

Concentration

1. A solution of magnesium hydroxide has a concentration of 3.45 molar and is made by dissolving 2.78 moles of magnesium hydroxide. What what is the volume prepared?

c=n/v 3.45=2.78/v 1.241L=v

2. If the concentration of a substance is 0.89M and the volume is 440ml, how many moles are there? c=n/v 0.89=n/0.440 2.023mol=n

3. What is a solute? The dissolved part of a solution

4. What is a solvent?

The part that takes up the majority of the solution. The solute is dissolved in the solvent.

5. What is/are :

a) Saturated vs unsaturated?

Saturated means a solution has residue at the bottom and cannot hold more solvent and unsaturated means that the solution can hold more solvent.

b) Homogeneous vs heterogeneous?

Homogenous means that you cannot see the parts of the solution and they appear as one unit. Heterogeneous means that you can visibly see the parts of the solution.

- c) Name 3 factors that affect the rate of dissolving
- 1. Agitation

- 2. Heat
- 3. Pressure

Dissociation

6. Dissociate the following compounds:

a) NaNO₃ (aq) Na⁺_(aq)+ NO_{3(aq)} b) KCl (aq) K⁺_(aq)+Cl_(aq)c) H₂SO₄ (aq) $2H^{+}_{(aq)}+SO_{4(aq)}^{-2}$

7. What is a polar covalent bond?

A polar covalent bond is where atoms that are shared by atoms spend more time near the oxygen nucleus than the hydrogen one. The electrons are therefore shared unequally.

8. Dissociate the following equation completely and then write the Net Ionic Equation:

a) 3NaOH (aq) + Fe(NO₃)₃ (aq) \rightarrow 3NaNO₃ (aq)+ Fe(OH)₃ (s) $3Na_{(aq)}^{+}+3OH_{(aq)}^{-}+Fe_{(aq)}^{+}NO_{3(aq)}^{-}\rightarrow 3Na_{(aq)}^{+}+3NO_{3(aq)}^{-}+Fe(OH)_{3}$ $3OH_{(aq)}^{-}+Fe_{(aq)}^{+3}\rightarrow Fe(OH)_{3(s)}$

Dilution

8. You have 32.0L of a 0.70 M solution. What is the concentration of the final solution prepared of a 67.0L solution? $V_1C_1=V_2C_2$ (32)(0.7)=(67)C_2 22.4=67C_2

C₂=0.3343M

9. If a solution with 0.754 M is produced by adding 0.222 M with a volume of 56.0L what is the volume of the original solution? $V_1C_1=V_2C_2$ $V_1(0,754)=(56)(0,222)$

 $V_1(0.754)=(56)(0.222)$ $V_1=16.49L$

Acids and Bases

Acid vs Base

1. Name 3 characteristics of an acid and 3 of a base.

ACID	BASE
 Sour Red indicator paper Lower PH number 	 Bitter Blue indicator paper Higher PH number

2. Compare weak and strong electrolytes in a table.

Strong Electrolytes	Weak Electrolytes
 Greater number of ions acid/base undergoes total dissociation or ionization Brighter which means a better conductor 	 Less number of ions acid/base undergoes partial dissociation Less bright which means a weaker conductor Partial reversible reaction

3. What are the main acids?

- Sulfuric: H2SO4
- Chloric: HClO3
- Carbonic: H2CO3
- Phosphoric: H3PO4
- Nitric: HNO3

4. What is the equivalence point?

The equivalence point is the point at which chemically equivalent quantities of bases and acids have been mixed (mol to mol ratio is the same).

5. What is titration?

The process of determining a concentration by slowly adding another substance until it reacts

6. Potassium hydroxide reacts with Sulfuric acid:

- a) Write a balanced equation
- b) Write a total dissociation equation
- c) Write the NET ionic equation

```
AgNO_{3(aq)}+BaCl_{2(aq)} \rightarrow AgCl_{(s)}+Ba(NO_{3})_{2(aq)}
20L
               45L
0.100M 0.200M
      d) Moles of the reactant remaining
2AgNO_{3(aq)}+BaCl_{2(aq)}\rightarrow 2AgCl_{(s)}+Ba(NO_{3})_{2(aq)}
2Ag_{(aq)}^{+}+2NO_{3(aq)}^{-}+Ba_{(aq)}^{-}^{2+}+Cl_{(aq)}^{-} \rightarrow 2AgCl_{(s)}^{+}+Ba_{(aq)}^{-}^{2+}+NO_{3(aq)}^{-}
2Ag_{(aq)}^{+}+Cl_{(aq)}^{-}\rightarrow 2AgCl_{(s)}
Find the number of moles
c=n/v
                        c=n/v
0.100=n/20
                    0.200=n/45
0.005=n
                    0.0044=n
Find the LR and XS
AgNO<sub>3</sub>:BaCl<sub>2</sub>
0.005:0.0044
-----
            1
2
0.0025:0.0044
Therefore AgNO<sub>3</sub> is the LR and BaCl<sub>2</sub> is the XS
```

LR:XS 0.005:x 2 1 2x=0.005 x=0.0025 XS remaining=XS initial- XS consumed = 0.0044-0.0025 = 0.0019mol

PH

7. The hydroxide ion concentration of fish is 1.67×10^{-11} , calculate the ph of the fish. ph=-log[H₃O⁺] ph=-log[1.67x10⁻¹¹] ph=10.78

ph=14-10.78 ph=3.22

8. Your chicken has a poh of 4.56. What is the hydronium ion concentration? ph=14-4.56 ph=9.44

 $H_{3}O=10^{-pOH}$ $H_{3}O=10^{-9.44}$ $= 3.631 \times 10^{-10}$

Gases

1. Tires have a volume of 25.00L and temperature of -10 degrees celsius and later is 10 degrees celsius. What is the final volume of the tires?

 $V_1/T_1 = V_2/T_2$ (25.00)(-10+273)= V_2 (10+273) V_2 =23.23L

2. A balloon has a pressure of 15 kPa and temperature of 273 degree k. It later has a temperature of 289 degrees k. What is the final pressure?

 $P_1V_1 = P_2V_2$ (15)(273)= P_2 (289) $P_2 = 14.17$ kPa

3. A balloon is 23 degrees c, 12 L and has a pressure of 35 kPa. After it is 2 degrees c and has pressure of 6 kPa, what is the volume?

 $\begin{array}{ccc} P_{1}V_{1} & P_{2}V_{2} \\ \hline T_{1} & T_{2} \\ (35)(12) & (6)V_{2} \end{array}$

 $\begin{array}{c} \hline (23+273) & (273+2) \\ V_2 = 65.03L \end{array}$

4. A substance has a pressure of 200 kPa, 600 mol and is at 45 degrees c. What is the volume? PV= nRT (200)V=(600)(0.8314)(45+273) V=793.1556L