SCH4U: EXAM · REVIEW

SCH4U_2009 - 2010

(a)

 $C_{(g)}$

a. 12.0 g

1. The heat of a reaction is equal to:

- a. enthalpy (products) + enthalpy (reactants)
- b. enthalpy (reactants) enthalpy (products)
- c. enthalpy (products) enthalpy (reactants)
- d. sum of all internal molecular energies

2. Which of the following has a standard enthalpy of formation, ΔH^0_{f} , of 0 kJ mol⁻¹ at 25°C and 1.00 atm?

- (b) $O_{(g)}$ (c) $Fe_{(l)}$ (d) $H_{2(g)}$ (e) $Ne_{(l)}$
- 3. Consider the following equation for the combustion of hydrogen:

 $\mathrm{H_{2(g)}} \hspace{0.1in} + \hspace{0.1in} {}^{1}\!/_{2} \hspace{0.1in} \mathrm{O_{2(g)}} \hspace{0.1in} \longrightarrow \hspace{0.1in} \mathrm{H_{2}O_{(g)}} \hspace{0.1in} + \hspace{0.1in} 243 \hspace{0.1in} \mathrm{kJ}$

In order to produce 1215 kJ of heat, how many grams of H₂ must burn?

- b. 0.100 g c. 10.0 g d. 0.250 g e. 8.00 g
- 4. For the following reaction $H_{2_{(g)}} + F_{2_{(g)}} \longrightarrow HF_{(g)} + 268.8 \text{ kJ}$

The potential energy diagram is given below.

Which of the following statements concerning the energy relations of the above system is false?

- a) the heat of the reaction per mole of hydrogen fluoride is represented by the distance X on the graph
- b) the reaction is exothermic
- c) the heat of the reaction is 268 kJ per mole of fluorine gas
- d) the activation energy for the reverse reaction is + 310 kJ per mole of HF used
- e) the activation energy per mole of hydrogen fluoride formed is + 42 kJ

5. Given the following thermochemical equation:

$$H_{2(g)} + 1/2 O_{2(g)} \longrightarrow H_2O_{(l)} \Delta H^0 = -285.8 \text{ kJ}$$

How much heat is evolved when 100.0 g of $H_2O_{(1)}$ are formed from the combustion of hydrogen gas and oxygen gas?

- a. 51.44 b. 285 kJ c. 1587 kJ d. 2297 kJ
- 6. Given the following thermochemical equation:

 $2 \operatorname{Al}_{(s)} + 3/2 \operatorname{O}_{2(g)} \longrightarrow \operatorname{Al}_2\operatorname{O}_{3(s)} \Delta \operatorname{H}^0 = -400 \text{ kJ}$ Determine $\Delta \operatorname{H}^0$ for: $2 \operatorname{Al}_2\operatorname{O}_{3(s)} \longrightarrow 4 \operatorname{Al}_{(s)} + 3 \operatorname{O}_{2(g)}$ a. +200 kJ b. +400 kJ c. -400 kJ d. +800 kJ

7. Which one of the following equation represents the standard enthalpy of formation, ΔH^0_{f} , of nickel (II) carbonate, NiCO₃:

- a. $\operatorname{Ni}_{(s)}$ + $\operatorname{C}_{(g)}$ + $3/2 \operatorname{O}_{2(g)}$ \longrightarrow $\operatorname{NiCO}_{3(s)}$ b. $\operatorname{Ni}_{(s)}$ + $\operatorname{C}_{(s)}$ + $3/2 \operatorname{O}_{2(g)}$ \longrightarrow $\operatorname{NiCO}_{3(s)}$ c. $2 \operatorname{Ni}_{(s)}$ + $2\operatorname{C}_{(s)}$ + $3\operatorname{O}_{2(g)}$ \longrightarrow $2 \operatorname{NiCO}_{3(s)}$ d. $\operatorname{Ni}_{(s)}$ + $\operatorname{CO}_{3^{-2}(aq)}$ \longrightarrow $\operatorname{NiCO}_{3(s)}$
- 8. The heats of formation, ΔH^0_{f} , of NO₂ and N₂O₄ are +33.2 and +9.2 kJ mol⁻¹ respectively. Calculate the enthalpy change for the reaction:

$$A_{1} - 57.2 \text{ kJ} \qquad B_{24.0 \text{ kJ}} \qquad C_{1.4 \text{ kJ}} \qquad D_{204 \text{ (g)}} \qquad A_{1} - 57.2 \text{ kJ} \qquad B_{204 \text{ (g)}} \qquad B_{10} - 24.0 \text{ kJ} \qquad C_{10} - 24.0 \text{ kJ} \qquad B_{10} - 24.0 \text{ kJ}$$

9. Consider the following four equations:

$$1) \quad C_6H_6(l) + O_2(g) \longrightarrow 6 CO_2(g) + 3 H_2O(l) \qquad \Delta H^0_{\ 1}$$

2)
$$6 C_{(s)} + 3 H_{2(g)} \longrightarrow C_6 H_{6(l)} \Delta H_2^0$$

3)
$$H_{2(g)} + O_{2(g)} \longrightarrow H_2O_{(l)} \Delta H^0_{3}$$

4)
$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H^0_4$$

The enthalpy change for reaction 1, $\Delta H_{1,}^{0}$ can be obtained by algebraically combining the ΔH^{0} values for the other reactions in which of the following ways?

a)
$$6 (\Delta H^{0}{}_{4}) + 3 (\Delta H^{0}{}_{3}) + \Delta H^{0}{}_{2}$$

b) $6 (\Delta H^{0}{}_{4}) - 3 (\Delta H^{0}{}_{3}) + \Delta H^{0}{}_{2}$
c) $-6 (\Delta H^{0}{}_{4}) - 3 (\Delta H^{0}{}_{3}) + \Delta H^{0}{}_{2}$
d) $6 (\Delta H^{0}{}_{4}) + 3 (\Delta H^{0}{}_{3}) - \Delta H^{0}{}_{2}$

10. Which of the following species has the highest entropy, S⁰ at 25 ^oC ?

- A. $C_{3}H_{8(g)}$ B. $C_{2}H_{4(g)}$ C. $Zn_{(s)}$ D. $SiF_{4(g)}$
- 11. Which one of the following processes would be expected to have a value of ΔS° closest to zero?

A.
$$H_{2(g)} + F_{2(g)} ---> 2HF_{(g)}$$
B. $C_{2}H_{4(g)} + HBr_{(g)} ---> C_{2}H_{5}Br_{(g)}$ C. $CO_{2(g)} ---> CO_{(g)} + 1/2 O_{2(g)}$ D. $2NO_{2(g)} ---> 2NO_{(g)} + O_{2(g)}$

12. What is true about the signs of ΔH and ΔS for a reaction that is spontaneous at low temperatures but becomes non-spontaneous at higher temperatures?

	ΔH	ΔS
A.	-	-
В.	-	+
C.	+	+
D.	+	-

13. Which of the following combinations of enthalpy change, ΔH , entropy change, ΔS , and Gibbs Free energy change, ΔG would **always give a spontaneous reaction**?

ΔH	ΔS	ΔG
increased	increased	+
increased	decreased	_
decreased	decreased	+
decreased	increased	_

4. In which of the following does the entropy decrease ?

A. NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)

B.
$$4 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(g) \rightarrow 4 \operatorname{NH}_3(g) + 5 \operatorname{O}_2(g)$$

D.
$$CaCO_3(g) + 2 HCl (aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(g)$$

Progress of the reaction

The activation energy for the forward reaction is:

A. 25 kJ B. 50 kJ C. 75 kJ D. 125 kJ

16. Consider the following reaction mechanism:

Step 1:	ICl +	$H_2 \rightarrow HI + HCl$	(Slow)
Step 2:	ICl +	HI \rightarrow HCl + I ₂	(Fast)

The species HCl is a:

A. Product	B. Catalyst	C. Reactant	D. Reaction intermediate
------------	-------------	-------------	--------------------------

17. Determine the rate at which CO_2 is produced if butane (C_4H_{10}) is consumed at the rate of 2.0 mol/L/min.

 $C_{4}H_{10(g)} + O_{2(g)} \longrightarrow 4 CO_{2(g)} + 5 H_{2}O_{(g)}$ a) 2.0 mol/L/min b) 4.0 mol/L/min c) 5.0 mol/L/min d) 8.0 mol/L/min

18. If the half-life of a first-order process is 3.00 minutes, the rate constant for the process is:

A. 1.50 /min B. 1.05 /min C. 4.34 /min D. 0.231 /min

19. The rate of reaction increases with increasing temperature primarily because:

- a. the activation energy is lowered as the temperature is increased
- b. changing the temperature usually alters the mechanism
- c. the heat of reaction is increased

d. a greater fraction of the molecules possess the activation energy

20. A catalyst speeds up a reaction by:

only

A. O.

- a. lowering the ΔH for the reaction
 c. lowering the enthalpy of the reactants
- b. lowering the activation energy for the reaction d. raising the enthalpy of the reactants

21. Which of the following can be used to determine the order of a reaction?

- I. Studies of reaction rate as a function of reactant concentration
- II. Consideration of the balanced equation for the reaction
- III. Knowledge of the activation energy for the reaction

B. II only C. Either I or IID. I, II or III

22. Which species might be behaving as a catalyst based on the equations below?

$$\begin{array}{cccc}
O_3 + Cl & \longrightarrow & ClO + O_2 \\
ClO + O & \longrightarrow & Cl + O_2 \\
B. Cl & C. ClO & D. O
\end{array}$$

23. Reaction rates generally increase in response to a decrease in:

A.	catalyst concentration.	В.	reagent concentration
C.	particle size.	D.	temperature.

23. The rate equation for the reaction between $andO_2$ and NO is: O_2

Rate = $k [O_2] [NO]^2$

By what factor would the rate of this reaction increase if the concentrations of O₂ and NO are both doubled?

Ammonia is produced commercially by the Haber process: 24.

> \Rightarrow 2NH_{3(g)} $N_{2(g)} + 3H_{2(g)} =$ $\Delta H = -96 \text{ kJ}$

The yield of ammonia at equilibrium can be increased by:

. adding a catalyst.	B. increasing the temperature.
increasing the pressure.	D. removing some H_2 .

For the reaction below at equilibrium: 25.

$$C_{(s)} + H_2O_{(g)} \longrightarrow H_{2(g)} + CO_{(g)} \Delta H = 132 \text{ kJ}$$

Which of the following changes will increase the quantity of H₂?

A. Adding C(s)	B. Increasing the pressure
C. Lowering the temperature	D. Removing CO

Consider the following equilibrium:

$$2 \text{ SO}_{3 (g)}$$
 \sim $2 \text{ SO}_{2 (g)}$ + $O_{2 (g)}$

The volume of the system is decreased at a constant temperature. A new state of equilibrium is established by a shift of the original equilibrium to the:

- Left and [SO₃] increases. a.
- b. Right and $[SO_3]$ decreases.
- Left and $[SO_3]$ remains unchanged. c.
- Right and $[SO_3]$ remains unchanged. d.

For a gaseous reaction, the equilibrium constant expression is: 27.

$$\mathbf{K}_{c} = \frac{[O_{2}]^{5}}{[NO]^{4}} \frac{[NH_{3}]^{4}}{[H_{2}O]^{6}}$$

Which equation corresponds to this equilibrium expression?

A. $4NH_3 + 5O_2 =$ \Rightarrow 4NO + 6H₂O B. $4NO' + 6H_2O \implies 4NH_3 + 5O_2$ C. $8NH_3 + 10O_2 \implies 8NO + 12H_2O$ D. $2NO' + 3H_2O \implies 2NH_3 + 5/2O_2$

28. The following reactions occur at 500 K.

I.	2 NOCl <	$2 \text{ NO} + \text{Cl}_2$	$K_c = 1.7 * 10^{-2}$
II.	$2 \text{ SO}_3 \checkmark$	$2 SO_2 + O_2$	$K_c = 1.3 * 10^{-5}$
III.	2 NO_2	$2 \text{ NO} + \text{O}_2$	$K_c = 5.9 * 10^{-5}$

When these reactions are arranged in order of increasing tendency to proceed to completion (i.e. least to greatest tendency), the order is:

A. I > II > III B. II > III > I C. III > II > I D. I > III > II

In an exothermic equilibrium reaction involving only gases, the value of K_{eq} can be **decreased** by

- adding some reactant gas.
- B. Removing some reactant gas.
- C. increasing the temperature.
- D. decreasing the temperature.
- 30. Consider the following equation:

 $4 \text{HCl}_{(g)} + \text{O}_{2(g)} \longrightarrow 2 \text{H}_2 \text{O}_{(l)} + 2 \text{Cl}_{2(g)}$

Initially 10 moles of HCl and 4.0 moles of oxygen are allowed to react in a 1.0 dm³ container. At equilibrium, 4.0 moles of Cl_2 are produced. Calculate the equilibrium constant, K_c , for this reaction.

A. 4.0×10^{-4} B. 2.6×10^{-2} C. 5.0×10^{-1} D. 8.0

1. The equation represents the equilibrium in a saturated solution of $Fe_2(SO_4)_3$ is:

A.	$Fe_2(SO_4)_3$ (s	5)	~~~~`````````````````````````````````	$3 \text{ Fe}^{2+}(aq) + 2 \text{ SO}_4^{3-}(aq)$
Β.	$Fe_{2}(SO_{4})_{3}$ (s	5)	~~~~~	2 Fe ²⁺ (aq) + 3 SO ₄ ³⁻ (aq)
C.	$Fe_{2}(SO_{4})_{3}$ (s	5)	~~~~`````````````````````````````````	$3 \text{ Fe}^{3+}(aq) + 2 \text{ SO}_4^{2-}(aq)$
D.	$Fe_{2}(SO_{4})_{3}$ (s	5)	~~~~~	2 Fe $^{3+}(aq) + 3 SO_4^{2-}(aq)$

32. The solubility of $SrSO_4$ at room temperature is 8.0 x 10⁻⁴ mol/L. The calculated K_{sp} for $SrSO_4$ is

A.
$$6.4 \ge 10^{-9}$$
 B. $1.6 \ge 10^{-7}$ C. $6.4 \ge 10^{-7}$ D. $4.2 \ge 10^{-5}$ E. $4.0 \ge 10^{-4}$

33. The solubility product constant for HgS is 1.0×10^{-20} . How many grams of HgS will dissolve in 1.0 L at 25 °C :

A.
$$1.0 \times 10^{-10}$$
 B. 2.4×10^{-8} C. 2.4×10^{-10} D. 2.4×10^{-12}

34. Which chemical species could behave as both a Bronsted base and as a Bronsted acid?

A.
$$HSO_4^-$$
 B. CO_3^{2-} C. NH_4^+ D. CI^{-1}

- 35. Which of the following is the **weakest** acid ?
- A. HClO B. $HClO_2$ C. $HClO_3$ D. $HClO_4$

36. Consider the following equilibrium for the indicator bromthymol blue, HInd :

HInd \longrightarrow H⁺ + Ind⁻ Blue Yellow

A solution of bromthymol blue is yellow. What should a student do to change the colour of the solution to blue?

A. Add a base to shift the equilibrium left. B. Add an acid to shift the equilibrium left. C. Add a base to shift the equilibrium right. D. Add an acid to shift the equilibrium right. 37. Which one of the following is the strongest acid? A. Ascorbic acid, $K_a = 8.0 \times 10^{-5}$ B. Benzoic acid, $K_a = 6.5 \times 10^{-5}$ C. 2-hydroxybenzoic acid, $K_a = 1.1 \times 10^{-3}$ D. chloroethanoic acid, $K_a = 1.4 \times 10^{-3}$ The $[OH^{-}]$ in 0.050 M HNO 3 at 25°C is: 38. A. 5.0 x 10⁻¹⁶ M C. $2.0 \times 10^{-13} \text{ M}$ B. 1.0 x 10⁻¹⁴ M D. 5.0 x 10⁻² M 39 The acid dissociation constant, $K_a(HS^-)$, is the equilibrium constant for which one of the following reaction (in aqueous solution): A. $HS^- + H_2O \Leftrightarrow H_2S + OH^-$ |B. $HS^- + H_3O^+ \Leftrightarrow H_2S + H_2O$ C. $HS^- + OH^- \Leftrightarrow S^{2-} + H_2O$ D. $HS^- + H_2O \Leftrightarrow H_3O^+ + S^{2-}$ Which of the following 0.10 M solutions will be acidic? C. $K_2 CO_3$ B. LiCl D. Na₃ PO₄ AlCl Consider the following data: 41 Solution Initial pH Final pH 1 1.0 4.0 2 2.0 6.0 3 6.0 3.0 4 9.0 3.0 In which solution has the $[H_3O^+]$ increased 1000 times? A. 1 B. 2 C. 3 D. 4

42. What is the number of sigma (σ) and pi (π) bonds and the hybridization of the carbon atom in :

48. When but-1-ene, $H_2C=CHCH_2CH_3$, reacts with bromine, the most likely product is:

A. H ₃ CCHBr CH ₂ CH ₃	B. H ₂ C=CHCH ₂ Br
C. HBrC=CBrCH ₂ CH ₃	D. H ₂ BrCCHBrCH ₂ CH ₃

49. Why are **alkenes more reactive than alkanes**?

A. Both parts of the oB. The pi bond in allC. The sigma bond inD. The pi bonds in the	double bond in alkenes ar kenes is weaker than the s n alkenes is weaker than ne alkanes are too weak	re equivalent sigma bond and is more su the pi bond and is more su	sceptible to chemical attack sceptible to chemical attack
50. How many different	ent isomers can be represe	ented by the formula C ₃ H ₈	₃ O?
A. 2 B. 3	C. 4	D. 5	
51. In a chemi unknown l	stry lab test, you are aske iquids. Which one decolo	ed to react a solution of bro purizes the bromine solution	omine with each of the following on?
A. 2,3-dimethylbutan	B. cyclohexer	ne C. ethanoic act	id D. carbon tetrachloride
52. Correct s	tatements about the $C = C$	C bond in ethene include:	
A its bond energy is B it consists of two s C it consists of a sign D non-rotation of the	more than twice that of C sigma bonds ma bond and a pi bond e bond results in two ison	C–C ners of ethene.	
53. What is the numbers ?	e designation of an electron $n = 3, l = 1$	on in an atom that can hav	ve the following set of quantum
A. 3s	B. 3p	C. 3d	D. 3f
54. Which sta	tements correctly desc	ribe the NO_2^- ion?	
L	It can be represented b	by resonance structures.	
П.	It has two lone pairs o	f electrons on the N atom.	
	. The N atom is sp^2 hyb	ridized.	
A. I and II only	B. I and III only	C. II and III only	D. I, II and III
55. What is the m	olecular shape and the hy	bridization of the nitroge	n atom in NH3 ?
A. tetrahedral, sp ³		B. Trigonal planar, sp ³	
C. Trigonal pyramid,	sp ²	D. Trigonal pyramidal,	, sp ³

- 56. A newly discovered crystal is a non-conductor of electricity as a solid. It is found to melt at 900 °C and when retested in the liquid state, it is found to conduct electricity. To which of the following crystal types does the newly discovered crystal belong ?
- A. Ionic B. Metallic C. Molecular network D. Molecular covalent
- 57. In which substance is hydrogen bonding present?
- C. CH₃CHO D. CH₃OH B. CH₂F₂ A. CH Which molecule shows covalent bonding, with the least ionic character? –Be–F B. F - LiC. F - BrD. F - FSilane, SiH₄, and methanol, CH₃OH, have the same molar mass, 32 g mol⁻¹. How do their 59. boiling points compare? A. They will be the same because they have the same molar mass. B. The boiling point of SiH₄ would be greater because the Si atom has larger van der Waals' forces. C. The boiling point of CH₃OH would be greater because it is more polar. D. The boiling point of CH₃OH would be greater because it has more atoms. 60 The substances bromine, Br₂, and iodine monochloride, ICl, have almost identical molar masses yet ICl boils at 97 °C and Br₂ boils at 59 °C. The best explanation for the difference is boiling points is that : A. ICl is a non-polar molecule and Br_2 is polar. ICI has a stronger bond than that in Br_2 . B. C. ICl has a longer bond than that in Br_2 . D. ICl has a permanent dipole moment and Br_2 does not.

This is the end of the multiple-choice section. Answer the remaining questions in Section B, directly in the spaces provided.

PART B: WRITTEN-RESPONSE

INSTRUC	ΓIONS: - -	You will be expected to communicate your knowledge and understanding of chemical principles in a clear and logical manners. Your steps and assumptions leading to a solution must be written in the spaces below the questions. Answers must include units where appropriate and be given to the correct number of significant figures
5	-	For questions involving calculation, full marks will NOT be given for providing only an answer.
	On the g activation reverse the grap	graph below, draw the potential energy diagram for a reaction in which the on energy for the forward reaction is 155 kJ mol ⁻¹ and the activation energy for the reaction is 195 kJ mol ⁻¹ . Is this reaction endothermic or exothermic? Show on oh the effect of adding a catalyst to this reaction. 6

Define the term enthalpy of formation.

2. Given the following thermodynamic data for the reaction:

Substance	$\Delta H_{\rm f}^{0}$ (kJ mol ⁻¹)	S⁰ (J K⁻¹ mol⁻¹) 192.3		
NH _{3 (g)}	— 46.1			
O _{2 (g)}	0	205.0		
NO _(g)	90.2	210.7		
H ₂ O (g)	— 241.8	188.7		

 $4 \text{ NH}_{3 (g)} + 5 \text{ O}_{2 (g)} \longrightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2 \text{ O}_{(g)}$

(i) Calculate the value of ΔH^0 for the reaction, and explain what may be deduced from your calculated value of ΔH^0 for the reaction.

(ii) Predict the sign of ΔS^0 for the above reaction, (without using calculations), and give your reasoning.

(iii) Calculate the value of ΔS^0 for the reaction.

4

2

(iv) Calculate the value of ΔG^0 for the reaction, (in kJ mol⁻¹), at 298 K.

3

3. Two gases react according to the following equation:

Х

Y

d.

 $X_{(g)} + 2Y_{(g)} \longrightarrow XY_{2(g)}$

Experiments were performed at 500 K in order to determine the order of the reaction, the following results were obtained:

Experiment Number	Initial Concentration of X (mol dm ⁻³)	Initial Concentration of Y (mol dm ⁻³)	Initial Rate of Formation of XY ₂ (mol dm ⁻³ s ⁻¹)		
1	0.10	0.10	0.0001		
2	0.10	0.20	0.0004		
3	0.10	0.30	0.0009		
4	0.20	0.10	0.0001		
5	0.30	0.10	0.0001		

a. Determine the order of the reaction with respect to X and Y and justify your answer:

2

b. Write a rate equation, (the Rate Law, i.e. the Rate Expression), for the reaction between X and Y.

c. Determine the numerical value for the rate constant and determine its units.

4

Using the rate equation predict a possible mechanism for this reaction. 2

e. If the concentration of X and Y were both halved, what would be observed for the rate of the reaction ?

4. Consider the following equilibrium:

 $2 \operatorname{CH}_{4(g)} \longrightarrow \operatorname{C}_{2}\operatorname{H}_{2(g)} + 3 \operatorname{H}_{2(g)}$

A 0.180 mol sample of CH_4 is added to an empty 1.00 L container at 800 $^{\rm o}C$. At equilibrium, the $[C_2H_2]$ is 0.0800 mol/L. Calculate the numerical value for the equilibrium constant.

Sav Consider the following equilibrium: $2 \operatorname{NOCl}_{(g)} \longrightarrow 2 \operatorname{NO}_{(g)} + \operatorname{Cl}_{2(g)}$ A chemist places 2.00 mol NOCl in a 1.0 L container. Describe the changes graphically in [NOCI], [Cl₂] and [NO] when the pressure on this system is increased, at constant temperature, until the system approaches a new equilibrium. 3 A saturated solution of BaSO $_4$ is given to patients needing digestive tract x-rays. 6. Write an equation that represents the solubility equilibrium. 1 a. Calculate the [Ba $^{2+}$] present in the saturated solution given the Ksp for BaSO₄ at 25 $^{\circ}$ C is b. 1.4 x 10⁻¹². 3

7. Will a precipitate form when 90.0 mL of 1.00 x 10⁻² M Cu(NO $_3)_2$ and 10.0 mL of 1.00 x 10⁻² M NaIO₃ are mixed? Explain using appropriate calculations. (Ksp Cu(IO₃)₂ = 1.23 x 10⁻⁸. 4

2	
8. Consider te following equilibrium:	
$H_2Se_{(aq)} + HTe_{(aq)} \longrightarrow HSe_{(aq)} + H_2Te_{(s)}$	
The reactants are favoured in this equilibrium.	
a. Identify the stronger acid.	1
b Identify the weaker base	1
	1
9. The hydrogen carbonate ion, HCO_3^{-1} , can act as a weak base. Use calculations to K _b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO_3^{-1} , can act as a weak base. Use calculations to K_b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO_3^{-1} , can act as a weak base. Use calculations to K_b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO_3^{-1} , can act as a weak base. Use calculations to K_b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO_3^{-1} , can act as a weak base. Use calculations to K_b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO ₃ ⁻¹ , can act as a weak base. Use calculations to K _b of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5
9. The hydrogen carbonate ion, HCO ₃ ⁻¹ , can act as a weak base. Use calculations to K ₀ of a solution containing 0.125 M hydrogen carbonate ion, if it has a pH 4.25.	b determine the 5

10. Calculate the pH of a 0.122 M solution of vitamin C, ascorbic acid, (use the abbreviation, HAsc), a weak monoprotic acid with a $K_a = 6.90 \times 10^{-5}$ at 25 °C.

	ICl ₂ ⁻¹	SCl ₆	OF ₂
Lewis structure including dipoles			
Shape			
Bond angle			
Polar/Non-polar			
IMFA's			

15. Butan-1-ol, and ethoxyethane both have the same molecular formula, $C_4H_{10}O$, but they have different structural formulas. Explain which liquid will have a higher boiling point. 4

butanol: $CH_3(CH)_2CH_2(OH)$ ethoxyethane: $CH_3CH_2 - O - CH_2CH_3$

- 16. Butanoic acid and ethanol can be used to produce ______ and water, in the presence of concentrated sulphuric acid as a catalyst. The chemical name for the product is ______ This reaction is known as ______. The balanced chemical equation for this reaction is:
- 17. When a secondary alcohol, such as propan-2-ol is oxidized in the presence of acidified potassium dichromate, the product obtained is ______; and the equation for the reaction is:
- 18. The reaction of CH₃CH=CH-CH=CH₂ with excess bromine will form the product _____.
- 19. The formula for methyl ethanoate is: _____
- 20. Caffeine is a compound found in chocolate, soft drinks, coffee and tea. It acts as a stimulant to the nervous system. Using the following structure of caffeine,
- a) determine the total number of sigma and pi bonds in the molecule and
- b) state which bonds are stronger on their own, sigma or pi, and explain why.
- c. Determine the hybridisation of the O –atom, and the C –atom in the CH_3 group

B

Multiple Choice Answers

1	2	3	4	5	6	7	8	9	10
С	D	С	С	С	D	В	А	D	D
11	12	13	14	15	16	17	18	19	20
А	А	D	В	С	А	D	D	D	В
21	22	23	24	25	26	27	28	29	30
A	В	С	С	D	А	А	С	С	D
31	32	33	34	35	36	37	38	39	40
D	С	В	А	А	В	С	С	С	А
41	42	43	44	45	46	47	48	49	50
C	А	D	D	В	А	D	D	В	В
51	52	53	54	55	56	57	58	59	60
В	C	В	В	D	A	D	D	С	D

apall.com