Review of Inorganic Chemistry

Colours of Solids

	Colour	Solid
	Yellow-brown	FeCl ₃ (hydrated)
	Red-brown	Fe_2O_3 , $Fe(OH)_3$, Cu_2O
	Red	$K_4Fe(CN)_6$
	Pink	Hydrated Co ⁺² , hydrated Mn ⁺² (very pale - colourless)
	Yellow	BaCrO ₄ , PbCrO ₄ , PbI ₂ , AgBr (cream), AgI (pale yellow),
		soluble chromates
	Green	Hydrated Fe ⁺² , hydrated Ni ⁺² , hydrated Cr ⁺³ ,
	Blue	Hydrated Cu ⁺² , anhydrous Co ⁺²
	Purple	Chromium (III), KMnO ₄ (purple lustre)
6	Black	CuO, MnO ₂ , sulphides of Cu ⁺² , Co ⁺² , Pb ⁺² , Fe ⁺² , Ag ⁺¹

Colours of Solutions

Colur	Possible Ions Present
Brown	Fe^{+3}
Orange	$\operatorname{Cr_2O_7^{-2}}$
Yellow	$\text{CrO}_4^{-2}, \text{Br}_{2(aq)}$
Green	Cr ⁺² , Ni ⁺² , Fe ⁺² , Cr ⁺³ , MnO ₄ ⁻²
Blue	Cu ⁺² , Co ⁺² , Cu(NH ₃) ₄ ⁺² , Ni(NH ₃) ₆ ⁺²
Purple	MnO_4^{-1}
Pink	Mn^{+2} , Co^{+2}

Tests for Gases

Gas	Colour, Odour	Test	Result if Positive	
H_2	colouless, odourless	ignite using a lighted splint	mildly explosive,"pop"	
O_2	colouless, odourless	glowing splint	Re-ignites	
CO_2	colouless, odourless	bubble through Ca(OH) _{2(aq)}	turns milky	
NH_3	colouless, pungent	moist red litmus paper	turns blue	
HCl	colourless, pungent	bring into contact with a drop	dense white fumes of	
		of $NH_{3(aq)}$	NH ₄ Cl	
\mathbf{I}_2	violet, pungent gas, condensing to black-silvery crystals			

Flame Tests

Colour of Flame	Ion Probably Present
Lilac	\mathbf{K}^{+1}
Red	Li^{+1}
Crimson	Sr^{+2}
Brick -red	Ca^{+2}
Golden-yellow	Na^{+1}
Green: apple	Ba^{+2}
[:] bluish	Cu^{+2}

Tests for Anions

Ion Cl ⁻¹	Test AgNO _{3(aq)}	Result if Positive White ppte of AgCl
Br ⁻¹	 (1) AgNO_{3(aq)} (2) Chlorine water, Cl_{2(aq)}, followed by a few drops of TTE 	Pale cream ppte pf $AgBr$ orange -yellow layer of $Br_{2(l)}$ seen in TTE
L	 (1) AgNO_{3(aq)} (2) Chlorine water, Cl_{2(aq)}, followed by a few drops of TTE 	Yellow ppte of AgI Pink-purple layer of $I_{2(l)}$ seen in TTE
CO ₃ -2	to solid add dil. HCl _(aq)	Effervescence, colourless gas turns $Ca(OH)_{2(aq)}$ milky
SO_4^{-2}	add BaCl _{2(aq)}	White ppte of BaSO ₄
CH ₃ COO ⁻¹	to solid or solution, add dil. H ₂ SO ₄	Smell of vinegar from displaced weak acid CH ₃ COOH

Some Common Oxidizing Agents and Reducing Agents

Oxidizing Agent

F₂, Cl₂, Br₂,O₂, S MnO⁻¹, MnO₂ (in H⁺¹_(aq)) Cr₂O₇⁻² (in H⁺¹) H₂O₂ ClO₃⁻¹, ClO⁻¹, BrO₃⁻¹, IO₃⁻¹ HNO₃, HNO₂, NO₃⁻¹ H₂SO₄ Cu⁺¹, Cu⁺², Fe⁺³, Ag⁺¹

Usual Reduction Product

F ⁻¹ , Cl ⁻¹ , Br ⁻¹ , O ⁻² , S ⁻²
Mn^{+2}
Cr^{+3}
H_2O
Cl ⁻¹ , Cl ₂ , Br ⁻¹ , Br ₂ , I ⁻¹ , I ₂
NO, NO_2, N_2O_4, N_2O
SO_2 , H_2S , S
Cu, Fe ⁺² , Fe, Ag
, , , ,

Reducing Agent

Li, Na, K, Mg, Ca, Al,
Al, Sn, Fe, Zn
Fe ⁺² , Sn ⁺²
H_2
$\mathbf{I}^{\text{-}1}$
S^{-2} , H_2S
SO_3^{-2}
NH_3 , N_2H_4

Usual Oxidation Product

$$\begin{array}{l} Li^{+1},\,Na^{+1},\,K^{+1},\,Mg^{+2},\,Ca^{+2}\\ Al^{+3},\,Sn^{+2}\,(^{+4}),\,Fe^{+2}\,(^{+3}),\,Zn^{+2}\\ Fe^{+3},\,Sn^{+4}\\ H^{+1}\\ I_2\\ S\\ SO_4^{-2}\\ N_2 \end{array}$$