Review of Inorganic Chemistry ## **Colours of Solids** | | Colour | Solid | |---|--------------|---| | | Yellow-brown | FeCl ₃ (hydrated) | | | Red-brown | Fe_2O_3 , $Fe(OH)_3$, Cu_2O | | | Red | $K_4Fe(CN)_6$ | | | Pink | Hydrated Co ⁺² , hydrated Mn ⁺² (very pale - colourless) | | | Yellow | BaCrO ₄ , PbCrO ₄ , PbI ₂ , AgBr (cream), AgI (pale yellow), | | | | soluble chromates | | | Green | Hydrated Fe ⁺² , hydrated Ni ⁺² , hydrated Cr ⁺³ , | | | Blue | Hydrated Cu ⁺² , anhydrous Co ⁺² | | | Purple | Chromium (III), KMnO ₄ (purple lustre) | | 6 | Black | CuO, MnO ₂ , sulphides of Cu ⁺² , Co ⁺² , Pb ⁺² , Fe ⁺² , Ag ⁺¹ | # Colours of Solutions | Colur | Possible Ions Present | |--------|---| | Brown | Fe^{+3} | | Orange | $\operatorname{Cr_2O_7^{-2}}$ | | Yellow | $\text{CrO}_4^{-2}, \text{Br}_{2(aq)}$ | | Green | Cr ⁺² , Ni ⁺² , Fe ⁺² , Cr ⁺³ , MnO ₄ ⁻² | | Blue | Cu ⁺² , Co ⁺² , Cu(NH ₃) ₄ ⁺² , Ni(NH ₃) ₆ ⁺² | | Purple | MnO_4^{-1} | | Pink | Mn^{+2} , Co^{+2} | ## **Tests for Gases** | Gas | Colour, Odour | Test | Result if Positive | | |----------------|---|--|------------------------|--| | H_2 | colouless, odourless | ignite using a lighted splint | mildly explosive,"pop" | | | O_2 | colouless, odourless | glowing splint | Re-ignites | | | CO_2 | colouless, odourless | bubble through Ca(OH) _{2(aq)} | turns milky | | | NH_3 | colouless, pungent | moist red litmus paper | turns blue | | | HCl | colourless, pungent | bring into contact with a drop | dense white fumes of | | | | | of $NH_{3(aq)}$ | NH ₄ Cl | | | \mathbf{I}_2 | violet, pungent gas, condensing to black-silvery crystals | | | | ### Flame Tests | Colour of Flame | Ion Probably Present | |------------------------|----------------------| | Lilac | \mathbf{K}^{+1} | | Red | Li^{+1} | | Crimson | Sr^{+2} | | Brick -red | Ca^{+2} | | Golden-yellow | Na^{+1} | | Green: apple | Ba^{+2} | | [:] bluish | Cu^{+2} | ### **Tests for Anions** | Ion
Cl ⁻¹ | Test
AgNO _{3(aq)} | Result if Positive White ppte of AgCl | |-----------------------------------|--|---| | Br ⁻¹ | (1) AgNO_{3(aq)} (2) Chlorine water, Cl_{2(aq)}, followed by a few drops of TTE | Pale cream ppte pf $AgBr$ orange -yellow layer of $Br_{2(l)}$ seen in TTE | | L | (1) AgNO_{3(aq)} (2) Chlorine water, Cl_{2(aq)}, followed by a few drops of TTE | Yellow ppte of AgI Pink-purple layer of $I_{2(l)}$ seen in TTE | | CO ₃ -2 | to solid add dil. HCl _(aq) | Effervescence, colourless gas turns $Ca(OH)_{2(aq)}$ milky | | SO_4^{-2} | add BaCl _{2(aq)} | White ppte of BaSO ₄ | | CH ₃ COO ⁻¹ | to solid or solution, add dil. H ₂ SO ₄ | Smell of vinegar from displaced weak acid CH ₃ COOH | ## Some Common Oxidizing Agents and Reducing Agents ### **Oxidizing Agent** ### F₂, Cl₂, Br₂,O₂, S MnO⁻¹, MnO₂ (in H⁺¹_(aq)) Cr₂O₇⁻² (in H⁺¹) H₂O₂ ClO₃⁻¹, ClO⁻¹, BrO₃⁻¹, IO₃⁻¹ HNO₃, HNO₂, NO₃⁻¹ H₂SO₄ Cu⁺¹, Cu⁺², Fe⁺³, Ag⁺¹ #### **Usual Reduction Product** | F ⁻¹ , Cl ⁻¹ , Br ⁻¹ , O ⁻² , S ⁻² | |--| | Mn^{+2} | | Cr^{+3} | | H_2O | | Cl ⁻¹ , Cl ₂ , Br ⁻¹ , Br ₂ , I ⁻¹ , I ₂ | | NO, NO_2, N_2O_4, N_2O | | SO_2 , H_2S , S | | Cu, Fe ⁺² , Fe, Ag | | , , , , | ### **Reducing Agent** | Li, Na, K, Mg, Ca, Al, | |-------------------------------------| | Al, Sn, Fe, Zn | | Fe ⁺² , Sn ⁺² | | H_2 | | $\mathbf{I}^{\text{-}1}$ | | S^{-2} , H_2S | | SO_3^{-2} | | NH_3 , N_2H_4 | #### **Usual Oxidation Product** $$\begin{array}{l} Li^{+1},\,Na^{+1},\,K^{+1},\,Mg^{+2},\,Ca^{+2}\\ Al^{+3},\,Sn^{+2}\,(^{+4}),\,Fe^{+2}\,(^{+3}),\,Zn^{+2}\\ Fe^{+3},\,Sn^{+4}\\ H^{+1}\\ I_2\\ S\\ SO_4^{-2}\\ N_2 \end{array}$$