Review I: Transition Metals

- 1. Electron configuration for:
 - a. Cr_{1}
 - b. Cr²⁺

Oxidation number for:

- a. $Cr_2O_4^{2-}$
- b. CrO_4^{2-}
- c. $CrCl_4^{2-}$

Classify as oxidation or reduction and balance $Cr_2O_4^{2-} \rightarrow CrO_4^{2-} + Cr^{3+}$

4. Identify (i) central ion (ii) ligand (iii) Coordination number

- a. $Cr(NH_3)_4^{2+}$
 - b. $CrCl(H_2O)_5^{2+}$
 - c. $(NH_4)_3VF_6$

Given Coordination number, write the formula and name of the complex ion formed

- a. $Cu^{2+} + H_2O(CN = 4)$
- b. $Fe^{3+} + CN^{-}(CN = 6)$
- c. $NI^{2+} + Cl^{-}(CN = 4)$
- d. $Ag^+ + NH_3 (CN = 2)$
- e. $Cu^{2+} + Cl^{-}(CN = 4)$

6. Identify 4 types of bonding in $CuSO_4 \bullet 5H_2O$

- 7. Compare the trends in Atomic radii, IE, energy for the elements in a short period (3 marks) to those of TM. Explain in terms of electron arrangement
 - Give 4 properties/characteristics of d-block elements and of their compounds. Illustrate your answers with suitable examples.
 - Why Sc and Zn do not behave as typical d-block elements?
 - 10. $Cu^{2+}(H_2O)_4$ is blue. When conc. HCl is added it turns yellow/green. Why? Explain.
 - 11. Which can act as a ligand: PH_3 , PH_4^+ , F^- , $C_2O_4^{-2-}$, $H_2O_4^{-2-}$, H_2O

12. The stability constants of the following two complex ions are:

i) $Cu(NH_3)_4^{2+}$ $K_c = 1.58 \times 10^{13}$ ii) $CuCl_4^{2-}$ $K_c = 3.98 \times 10^5$ a) Write the equation to which these constants refer

b) Use the equation and stability constants to predict what would happen if NH_3 solution were added drop by drop to a solution of $CuCl_4^{2-}$ ions

1.

2.

5.

13. a) What are geometric isomers?c) Draw the structure families of CrS⁻ and trans dichlorodiammine cobalt(II)

14. Explain why a H₂O solution of copper(II)sulphate is used to filter out heat waves (red end of spectrum)?

ANSWERS: Review I: Transition Metals

	a. b.	[Ar] 3d5 4s1 [Ar]3d4
	a. b.	+3 +6
	$\operatorname{Cr}_2\operatorname{O}_4^2$	$^{+2}$ > $\operatorname{CrO}_4^2 + \operatorname{Cr}^{3+} + 3e^-$ oxidation reaction
	a. b. c.	i: Cr^{2+} ii: NH_3 iii: 4 i: Cr^{3+} ii: Cl, H_2O iii: +3 i: V^{3+} ii: F, NH_4 iii: +3
	a. b. c. d. e.	$Cu(H_2O)_4^{2+}$ tetraaquacopper (II) iron Fe(CN) ₆ ³⁻ hexacyanoferrate (III) ion NiCl ₄ ²⁻ tetrachloronickel (II) ion Ag(NH ₃) ₂ ⁺ diamminesilver (I) ion CuCl ₄ ²⁻ tetrachlorocopper(II) ion
Covalent bonds within the S and O, in sulphate ion and		

covalent bonds 6. within the water molecule, Ionic bonds between Cu^{2+} and SO_4^{2-} , ion-dipole attractions between H₂O and CuSO₄

- 7. While it is common for a short period to experience large differences going across a period, the properties of TM remains fairly constant. This is because transition metals generally differ in electrons in the d-shell, increasing going across the period. However, the chemistry of the electrons is mainly involved in the s orbitals, so going across the period, the increase of electrons in the d-shell helps to shield the 4s electrons, keeping the effective nuclear charge relatively constant.
- 8. Forms coloured complex in solution, eg copper (II) sulphate is blue; Several oxidation states as a result of similar energy levels of 4s and 3d orbitals; catalytic properties, paramagnetic properties
- 9. All compounds of scandium have an empty 3d shell and all compounds of zinc have a filled 3d shell, hence they do not behave like TM.
- 10. The H2O ligand is replaced by HCl creating the complex ion CuCl_4^{2-} . This new ligand leads to repulsion of the electrons in the d shell of the central ion to a different extent, leading to different change in energy during transition, hence different coloured complex.

11. PH3, F-, CrO4(2-), H2O

12.

- a. i: $K_c = [NH3]^4 [Cu^{2+}] / [Cu(NH3)^{2+}]$ ii: $K_c = [Cl-]^4 [Cu^{2+}] / [CuCl4)^{2-}]$
- b. Since the equilibrium expression for the dissociation Cu(NH3)²⁺ is highly product favoured (as per the equilibrium constant), adding drops of NH3 would be unlikely to lead to the formation of Cu(NH3)²⁺
- 14. Copper (II) Sulphate has a characteristic blue coloured solution. This is a result of its absorption of red light, leading to the refection of blue wavelength light. Since it absorbs red light, it can easily filter out heat waves.

3