Quantum Mechanics Calculations

- 1. A quantum of electromagnetic radiation has an energy of 1x 10⁻²⁰ J. Calculate:
- a) its frequency (b) its wavelength (c) using the electromagnetic spectrum, decide what type of electromagnetic radiation it represents.
- 2. Use the equation $f = c R_H (1/n_1^2 1/n_2^2)$ where $R_H = 1.09 \times 10^7 \, \text{m}^{-1}$, and $c = 3.0 \times 10^8 \, \text{ms}^{-1}$ to calculate the frequency of spectral line produced when an electron drops from level 4 to level 3 in the hydrogen atom. In which of the named series of lines does this appear?
- 3. A neon light emits radiation of 616 nm wavelength. What is the frequency of this radiation? Use the electromagnetic spectrum to predict the colour associated with this wavelength.
- 4. Excited barium atoms emit visible light whose frequency is $6.59 \times 10^{14} \text{ s}^{-1}$. What is the wavelength of this light? Use the electromagnetic spectrum to predict its colour.
- 5.a) What is the wavelength of radiation whose frequency is $6.24 \times 10^{14} \text{ s}^{-1}$?
 - b) What is the frequency of radiation whose wavelength is $3.55 \mu m$?
 - c) Would you be able to see either of the radiations specified in parts (a) and (b)?
- 6. Under appropriate conditions, copper emits X-rays that have a characteristic wavelength of 1.54 Å. Calculate and compare the energy of photons of these X-rays to those emitted by a microwave source that radiates at a frequency of $5.87 \times 10^{10} \text{ s}^{-1}$.
- 7. For each of the following electronic transitions in the hydrogen atom, calculate the energy, frequency, and wavelength of the associated radiation:
- a) from n = 1 to n = 3, (b) from n = 2 to n = 5, (c) from n = 6 to n = 7. Will the radiation be absorbed or emitted during these transitions?
- 8. A laser used to weld detached retinas produces radiation with a frequency of $4.69 \times 10^{14} \text{ s}^{-1}$. What is the wavelength of this radiation?
- 9. What is the characteristic wavelength of an electron with a velocity of 5.97 x 10^6 ms⁻¹? The mass of the electron is 9.11 x 10^{-28} g. (Use the de Broglie equation: $\lambda = h / mv$, where the Planck's constant, h, is 6.63 x 10^{-34} Js, note 1J = 1 kg m²s⁻².)
 - 10. At what velocity must a neutron be moving in order for it to exhibit a wavelength of 500 pm? The mass of the neutron is 1.675×10^{-24} g.

Common Wavelength Units for Electromagnetic Radiation

Unit	Symbol	Length (m)	Type of Radiation
Angstrom	Å	10 -10	X-ray
Nanometer	nm	10 -9	Ultraviolet, visible
Micrometer	μm	10 -6	Infrared
millimeter	mm	10 -3	Infrared
Centimeter	cm	10 -2	microwave
Meter	m	1	TV, radio