Review: Atomic Theory, Bonding and Structure

1. Draw an energy level (box and arrow) diagram for:

: a)
$${51 \over 23}$$
 b) ${32 \over 16}$ c) ${91 \over 40}$ Zr

a)
$${}^{75}_{33}$$
As b) ${}^{59}_{28}$ Ni c) ${}^{65}_{29}$ Cu

- 2. Write the electronic configuration for: Fe, Fe(2+), Cr, Cu(1+), V(3+)
- 3. In **chart form**, generate a complete set of quantum numbers for the **last four electrons** in an atom having the electronic configuration: [Kr] 5s²4d₁¹4d₂¹
- 4. What are the quantum numbers **n**, **l** and **m**_l for each of the orbitals of: a) the 5p sublevel b) the 6d sublevel
- 5. If one electron has the quantum number n = 4, l = 3, m = +2, s = -1/2 and another electron has the quantum numbers n = 4, l = 3, m = -2, s = +1/2, what are the similarities and differences between the orbitals in which the electrons are found?
- 6. Consider the following properties of three substances...

Substance	Bolling Point (K)	Electrical	Electrical
		Conductivity of solid	Conductivity of liquid
I	1770	poor	good
II	2220	good	good
III	2630	poor	poor
IV	386	poor	poor

- Identify each substance as a molecular solid, network solid, metal or ionic compound. Briefly justify your choice in terms of structure and bonding for these substances.
- 7. Neon boils at -245°C while argon boils at -186°C. Explain why these boiling points are both **very low** and why the boiling point of argon is **higher** than that of neon.
- 8. Examine the following data...

Formula	Molar Mass	Melting Point (°C)
ZnO	81.4	1975
ZnS	97.5	1700
ZnSe	144.4	1100

- Why does the melting point of these compounds decrease despite an increase in molar mass?
- 9. Solid A is a molecular solid and solid B is an ionic solid. Both substances appear as white crystalline solids. Outline **three** methods that you would use to distinguish each solid.
- 10. Examine the following data for three **hypothetical** elements:

Formula	Molecular Mass (u)	Boiling Point (°C)	Density (g/L) at STP
X_2	30.0	-219.9	1.34
Y_2	92.0	-178.4	4.11
Z_2	138.0	-96.7	6.16

- a) Describe and explain the relationships between molecular mass and boiling point.
- b) Why does the density increase as you go down the chart **despite** the increase in molecular **size**?