Unit Test: Bonding

SCH3UE_2009 -2010_V1

NAME: _____

Multiple Choice (10)

1. Which substance has the lowest electrical conductivity ?								
A. $Al_{(s)}$ B. $Al_2O_{3(s)}$	C. KCl _(aq)	D. HCl _(aq)						
2. Which bond has the lowest polarity?								
A. C – H in methane, CH_4 C. C – C in ethane, C_2H_6	B. $C = O$ in carbon dioxid D. $C - C$ in ethanol, C_2H_3	de, CO ₂ ₅ OH						
3. The boiling points of dimethyl eth 78°C, respectively. This difference	er (H_3COCH_3) and ethanol is best attributed to the pro-	(H ₃ CCH ₂ OH) are -23°C and esence of:						
 A. stronger covalent bonds in etha B. stronger van der Waals' forces C. a more polar carbon-oxygen bo 	anol. 5 in ethanol. ond in ethanol.							
D. hydrogen bonding in ethanol.								
4. The shape of the triodide ion, I_3^{-1} ,	, is best described as:							
A. bent. B. linear.	C. T-shaped.	D. triangular.						
5. Which intermolecular forces exist	in dry ice, $CO_{2(s)}$?							
A. Covalent bonds C. Van der Waals' forces	B. Dipole-dipole a D. Hydrogen bond	attractions ds						
6. The geometry and bond angle of the sulfite ion (SO_3^{-2}) are best described as:								
A. pyramidal, 107 ^o	B. tetrahedral, 109°							
C. bent, 104°	D. trigonal planar	$, 120^{\circ}$						
7. The H-N-H bond angle in ammonia (NH ₃) is less than the H-C-H angle in methane (CH ₄) due to:								
a) repulsion between hydrogen atom	s in ammonia							
 attractions between hydrogen atoms in ammonia a lone pair of electrons in ammonia 								
d) the tetrahedral shape of the molect	ules in ammonia and methar	ne						
8. The formation of an ionic compou	and is to be expected from the	he reaction between:						
a) an element with a low ionization energy and an element with a low electron affinity								
b) an element with a low ionization e	b) an element with a low ionization energy and an element with a high electron affinity							
d) an element with a high ionization	an element with a high ionization energy and an element with a low electron armity an element with a high ionization energy and an element with a high electron affinity							

9. In which of the following are the compounds CaF₂, CaCl₂, CsF and LiF arranged in **increasing** order of lattice enthalpy ?

A. $CaCl_2$, CaF_2 , CsF , LiF	B. CsF, LiF, CaCl ₂ , CaF ₂
C. $CaCl_2$, CaF_2 , LiF, CsF	D. LiF, CaF ₂ , CsF, CaCl ₂

10. The compound SnC1_4 is a liquid at room temperature. It boils at 114°C and freezes at -33 $^{\circ}\text{C}$ to give soft, colourless crystals. The type of crystal formed by SnC1_4 is probably:

a) metallic b) ionic Multiple Choice Answers (10)			c)	c) network solid			d) molecular covalent		
	2	3	4	5	6	7	8	9	10

Problems (62)

1. a. The two isotopes normally found in a sample of nitrogen are ¹⁴N and ¹⁵N. Compare these two isotopes in terms of their fundamental particles. State and explain the difference, if any, in the chemical properties of these two isotopes. 3

b. State the block in the Periodic Table to which nitrogen belongs and explain your answer. 2

e. Give the complete electron arrangement of the N⁻³ ion.

2. Predict and explain the bond angles in:, NO_2^{-1} , NO_2^{+1}

4

1

3. Complete the following table:

	IF ₃	HCOO ⁻¹	BF ₃
Lewis structure including dipoles			
Shape			
Bond angle			
Polar/Non-polar			
IMFA's			

4. There are trends in the properties of the elements, both across periods and down Groups in the Periodic Table.

a. State what is meant by:

Period

b. The melting points of some of the halogens are shown in the table below:

Halogen	fluorine	chlorine	bromine	iodine
Melting point (K)	53	172	266	387

i. Describe the structure of, and the bonding, in solid iodine.

2

3

c. The boiling point of some of the hydrogen halides are shown in the table below:

Hydrogen halide	HF	HCl	HBr	HI
Boiling point (K)	293	188	206	238

i. Explain, in terms of intermolecular forces present, why the boiling point of HF is much higher than those of the other hydrogen halides.

- ii. Explain, in terms of intermolecular forces present, why the boiling points increase from HCl to HI.
 - 3

ii. Draw a diagram t

iii. Draw a diagram to show how two molecules of HF are attracted to each other. Include partial charges and all lone pairs of electrons in your diagram. State the type of intermolecular force responsible for this attraction.

d. There are trends in the **melting point** and the **electrical conductivity** of the metals in Period 3. Using Na and Al as your examples, state these trends and explain each trend in terms of the bonding.

Silicon has a melting point of 2950 °C. Explain, in terms of its structure and bonding, why the melting point of silicon is very high.

Draw the Lewis structure of and explain how the bonding in N_2O_4 (g) may arise, [Hint: see 6 (a) above]. 2