VSEPR THEORY AND SHAPES OF MOLECULES

There is a very simple theory that is remarkably effective in predicting the shapes of molecules formed by the representative elements. The **Valence Shell Electron Pair Repulsion Theory** (**VSEPR Theory**) is based on the idea that valence shell electron pairs stay as far apart as possible from each other to minimize the repulsions between them.

	EXAMPLE	No. Bonding Electron Pairs on Central Atom	No. Lone Pairs of Electrons on Central Atom	VSEPR Shape and Formula	Model, Example and Bond Angles
CavitaDall com	BeCl_2				
	BCl ₃				
	CN ⁻¹				
	CH ₂ Cl ₂				
	НСНО				
	CH ₄				
	NH ₃				
	$\rm H_2O$				

NOTE: The last 2 shapes (trigonal pyramidal and bent) are simply variations on the tetrahedral. **ALL** three of these shapes require a **TOTAL** of 4 pairs of electrons around the central atom.

Other VSEPR shapes to know:

	EXAMPLE	No. Bonding Electron Pairs on Central Atom	No. Lone Pairs of Electrons on Central Atom	VSEPR Shape and Formula	Model, Example and Bond Angles
CavitaDall com	PCI ₅				
	SF ₄				
	CIF ₃				
	SF ₆				
	BrF ₅				
	XeF ₄				
	I_3^{1-}				
	HCOO-1				
	SO ₃ -2				
	TeF ₂				

Assignment:

- 1. The molecules NF₃, BF₃, and ClF₃ all have molecular formulas of the type XF₃, but the molecules have different molecular geometries. Predict the shape of each molecule and explain the origin of the differing shapes.
- 2. The molecules SiF₄, SF₄, and XeF₄ all have molecular formulas of the type XF₄, but the molecules have different molecular geometries. Predict the shape of each molecule and explain the origin of the differing shapes.
- 3. The three species NO₂⁺, NO₂, and NO₂⁻¹ all have a central nitrogen atom. The ONO bond angles in the three species are 180⁰, 134⁰, and 115⁰, respectively. Explain this variation in bond angles.
- 4. The three species NH_2^{-1} , NH_3 , and NH_4^{+1} have H N H bond angles of 105^0 , 107^0 , and 109^0 respectively. Explain this variation in bonds angles.
- 5. Despite the larger electronegativity difference between the bonded atoms, $BeCl_{2(g)}$ has no dipole moment whereas $SCl_{2(g)}$ does possess one. Account for this difference in polarity,
- 6. The PF₃ molecule has a dipole moment of 1.03 D, but BF₃ has dipole moment of zero. How can you explain the difference.
- 7. The H P H bond angle in PH₃ is 93° ; in PH₄⁺¹ it is 109.5° . Account for this difference.
- 8. There are two compounds of the formula Pt(NH₃)₂Cl₂:

The compound on the right, known as *cisplatin*, is used in cancer therapy. Both compounds have a square planar geometry. Which compound have a nonzero dipole moment?

- 9. The nitrogen-nitrogen bond lengths in N₂H₄, N₂F₂, and N₂ are 1.45, 1.25, and 1.10 Å, respectively. How can this trend be explained?
- 10. Predict the molecular geometry of:
 - (a) AsF₃
 - (b) OCN⁻¹
 - (c) H₂CO
 - (d) NCS⁻¹
 - (e) HCO(OH) which has an H and two O atoms attached to C.

SavitaPall.com