SCHOAE I 01-02 (TOTAL: /34)

Name:

Part I: Multiple Choice (10 Marks)

1. Reaction rates generally increase in response to a decrease in...

A. catalyst concentration.

B. reagent concentration

C. particle size.

D. temperature.

2. For the reaction:

$$CH_2COCH_2(aq) + I_2(aq) \rightarrow CH_2COCH_2I(aq) + HI(aq)$$

it is found experimentally that doubling the concentration of CH COCH, doubles the reaction rate, tripling the concentration of H triples the rate, and halving the concentration of I has no effect on the rate. It may be concluded that ...

- A. iodine is acting as a catalyst in the reaction
- B. the slowest step in the reaction involves iodine.
- C. the rate of the reaction is independent of the pH of the solution.
- D. the rate determining step involves CH₂COCH₂ but not iodine.
- 3. Which species might be behaving as a catalyst based on the equations below?

$$\begin{array}{ccc} \mathrm{O_3} + \mathrm{Cl} & \rightarrow & \mathrm{ClO} + \mathrm{O_2} \\ \mathrm{ClO} + \mathrm{O} & \rightarrow & \mathrm{Cl} & + \mathrm{O_2} \end{array}$$

- A. O_2
- B. Cl

- C. ClO
- D. O
- 4. Which of the following can be used to determine the order of a reaction?
 - I. Studies of reaction rate as a function of reactant concentration
 - II. Consideration of the balanced equation for the reaction
 - III. Knowledge of the activation energy for the reaction
 - A. I only
- B. II only
- C. Either I or II D. I, II or III
- 5. A proposed mechanism for the decomposition of N_2O_5 is ...

$$N_2O_5(g) \rightarrow NO_2(g) + NO_3(g)$$

$$NO_2(g) + NO_3(g) \rightarrow NO_2(g) + O_2(g) + NO(g)$$

$$NO_2(g) + NO_3(g) \rightarrow NO_2(g) + O_2(g) + NO(g)$$
 (fast)

$$NO(g) + N_2O_5(g) \rightarrow 3NO_2(g)$$
 (fast)

The stoichiometric equation for the decomposition of N₂O₅ must therefore be ...

A.
$$N_2O_5(g) \rightarrow NO_2(g) + NO_3(g)$$

B.
$$N_2^2 O_5^3(g) \to NO_2^2(g) + O_2(g) + NO(g)$$

C.
$$N_2^2 O_5(g) + NO_2(g) + NO_3(g) \rightarrow 4NO_2(g) + O_2(g)$$

D. $2N_2^2 O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

D.
$$2N_{2}O_{5}(g) \rightarrow 4NO_{2}(g) + O_{2}(g)$$

Question 6 and 7 are about the reaction of hydrogen with nitrogen(II) oxide, which may be represented by the equation ...

$$2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$$

The reaction is known to follow the rate law: Rate = $k [NO]^2 [H_{...}]^T$

6. The overall order for this reaction is ...

A. 1

- B. 2
- C. 3
- D. 4
- 7. At 600 °C the instantaneous rate of reaction is 3.5 mol dm⁻³ s⁻¹ when the concentration of nitrogen(II) oxide and hydrogen are each 0.30 mol dm⁻³. The numerical value of the specific rate constant is ...

8. A certain chemical reaction can be represented by the overall equation:

$$2A(g) + B(g) \longrightarrow C(g)$$

At a particular temperature the initial rate of this reaction was measured for various initial concentrations of A and B, as shown below ...

	Initial conc (mol dm ⁻³)		Initial rate (mol of C hr ⁻¹)
Expt	\mathbf{A}	В	,
1	0.5	0.5	2.0 x 10-3
2	1.0	0.5	8.0 x 10-3
3	1.0	1.0	8.0 x 10-3
4	1.5	1.0	18.0 x 10-3

On the basis of the evidence provided, it appears that the mechanism of this reaction would involve two or more steps. In light of the experimental data, a possible rate determining step might be:

- A. $A + B \rightarrow intermediate complex$
- B. $A + A \rightarrow$ intermediate complex
- $C. A + AB \rightarrow C$
- D. $A + B \rightarrow C$
- 9. For the reaction : $I + I \longrightarrow I_2$ at 25 °C in CCl₄, $k = 8.9 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. This reaction is ...
 - A. First order and endothermic
- B. First order and exothermic
- C. Second order and endothermic
- D. Second order and exothermic

(Hint: you might be thinking, "How should I know the answer to this __ question?" Apply your knowledge and the answer will be obvious and relatively simple.)

10. For the reversible reaction: 2 NH $_{3(g)}$ $\;\;$ = $\;\;$ N $_{2(g)}$ $\;$ + $\;$ 3 H $_{2(g)}$

 $\Delta H = 92 \text{ kJ}$ and the activation energy equals 335 kJ. The activation energy for the reverse reaction will be ...

A. - 335 kJ

- B. 92 kJ
- C. 243 kJ
- D. 427 kJ

Part B: Short Answer (12 Marks)

11. Explain briefly a method that may be employed for measuring the rate of the following reactions:

(a)
$$CaCO_{3(s)}$$
 + 2 $HCl_{(aq)}$ \longrightarrow $CaCl_{2(aq)}$ + $H_2O_{(l)}$ + $CO_{2(g)}$ /2

(b)
$$CH_3COCH_{3 (aq)} + H^+_{(aq)} + CN^-_{(aq)} \longrightarrow CH_3C(OH))CN)CH_{3 (aq)}$$
 /2

12. In the reaction below:

$$BrO_{3 \; (aq)} \; + \; 5 \; Br_{\; (aq)} \; + \; 6 \; H^{\; +}_{\; (aq)} \; \longrightarrow \; 3 \; Br_{2(l)} \; + \; 3 \; H_2O_{(l)}$$
 The rate of disappearance of $BrO_{3 \; (aq)} = \; -10^{-3} \; mol \; dm^{-3} \; s^{-1}.$ What will be ...

(a) the rate with respect to Br ion?

13. After examining the following kinetic energy distribution curve for a certain reaction, sketch a fully labelled potential energy diagram that could reflect this reaction ...

(Note: I am asking for a sketch, thus numeric values are unimportant.)

/4

Part C: Problems (12Marks)

14. The following reaction is a first order reaction: $2 AB_{(g)} \longrightarrow A_{2 (g)} + B_{2 (g)}$ If the concentration of AB was initially 1.00 mol dm⁻³, and the rate constant, $k = 9.355 \times 10^{-4} \text{ s}^{-1}$ at 25 ^{0}C . What will be the concentration after 45 minutes?

/4

15. Two gases react according to the following equation: $X_{(g)} + 2Y_{(g)} \longrightarrow XY_{2 (g)}$ Experiments were performed at 400 K in order to determine the order of the reaction and the following results were obtained ...

Experiment Number	Initial Concentration of X (mol dm ⁻³)	Initial Concentration of Y (mol dm ⁻³)	Initial Rate of Formation of XY ₂ (mol dm ⁻³ s ⁻¹)
1	0.10	0.10	0.0001
2	0.10	0.20	0.0004
3	0.10	0.30	0.0009
4	0.20	0.10	0.0001
5	0.30	0.10	0.0001

a) What is the order of the reaction with respect to:

/2

(i) X

(ii) Y

b) Write a rate equation for the reaction between X and Y.

/2

c) Using the rate equation predict a possible mechanism for this reaction.

/2

d) What further experiment would you carry out to find the activation energy. (Hint: you may find your IB Data Book useful.)