## **Arrhenius Equation Problems**

1. The rate constant, k, was determined for the decomposition of hydrogen iodide at various temperatures. The results giving in k for a range of temperatures are given below.

| Temperature T (K) | In <b>k</b> | T <sup>-1</sup> (K <sup>-1</sup> ) |
|-------------------|-------------|------------------------------------|
| 550               | - 15.6      | 1.82 * 10-3                        |
| 600               | - 12.2      | 1.67 * 10 <sup>-3</sup>            |
| 650               | - 9.4       | 1.54 * 10 <sup>-3</sup>            |
| 700               | -7          | 1.43 * 10 <sup>-3</sup>            |
| 750               | - 4.9       | 1.33 * 10-3                        |

a) Plot a graph of ln k against  $T^{-1}$ . (Take the ln k axis from - 20 tp 0 and the  $T^{-1}$  axis from 1.2 x 10  $^{-3}$  to 1.9 x 10  $^{-3}$  K<sup>-1</sup>.

b) Calculate the gradient (slope) of your graph and use it to determine a value for the activation energy, E<sub>a</sub>, stating its units.

c) Without obtaining the actual value, state two different ways in which the value of A in the Arrhenius equation could be determined.

2. The rate constants for the decomposition of ethanol:

$$CH_3CHO_{(g)} \longrightarrow CH_{4(g)} + CO_{(g)}$$

Were measured at five digits different temperature, the data are shown in the table below:

| Rate Constant      | <u>Temperature</u> |
|--------------------|--------------------|
| $k (M^{-1}s^{-1})$ | <u>T(K)</u>        |
| 0.011              | 700                |
| 0.035              | 730                |
| 0.105              | 760                |
| 0.343              | 790                |
| 0.789              | 810                |

Plot ln k versus 1/T and determine E<sub>a</sub> (KJ mol<sup>-1</sup>) for the above reaction.

3.  $N_2O \longrightarrow N_2 + O$ 

The second order rate constant for the decomposition of nitrous oxide  $(N_2O)$  into  $N_{2(g)}$  and O (atom) has been measured at different temperatures as shown below.

Determine E<sub>a</sub> for the above reaction.

| Rate Constant    | <u>Temperature</u> |
|------------------|--------------------|
| <u>k (1/Ms)</u>  | <u>T (°C)</u>      |
| $1.87 * 10^{-3}$ | 600                |
| 0.0113           | 650                |
| 0.0569           | 700                |
| 0.244            | 750                |