Assignment 1: Kinetics Calculations

PART I

1. When heated above 500° *C*, potassium nitrate decomposes according to the equation:

 $-4KNO_{3(s)} \rightarrow 2K_2O_{(s)} + 2N_{2(g)} + 5O_{2(g)}$

If oxygen is being formed at a rate of 0.30 *mol/Ls*, what are the rates of formation of the other products? What is the rate at which the *KNO*₃ is decomposing? (1) 0.12 *mol/Ls* (2) 0.24 *mol/Ls*)

In the combustion of hexane:

 $-2C_6H_{14(g)} + 19O_{2(g)} \rightarrow 12CO_{2(g)} + 14H_2O_{(g)}$

It was found that rate of reaction of $C_{t}H_{\perp +}$ was -1.2 *mol/Ls*.

a. What was the rate of reaction of O_2 ?

(-11.4 mol/Ls)

- b. What is the rate of formation of CO_2 ? (+7.2 mol/Ls)
- c. What is the rate of formation of H_20 ? (+8.4 mol/Ls)

3. For the reaction $2A + B \rightarrow 3C$, it was found that the rate of disappearance of B was -0.3 *mol/Ls*. What was the rate of disappearance of A and the rate of appearance of C? (A= -0.6 *mol/Ls* C= +0.9 *mol/Ls*)

At a certain temperature, the rate of decomposition of N_2O_3 , in the following equation is $2.5 \times 10^{-6} mol/Ls$. How fast are NO_2 and O_2 being formed?

- 4. What units are used to express reaction rate?
 - In the reaction $3H_2 + N_2 \rightarrow 2NH_3$, how does the rate of disappearance of hydrogen compare to the rate of disappearance of nitrogen? How does the rate of appearance of NH_3 compare to the rate of disappearance of nitrogen?

<u>PART II</u>

120 s?

1. The following data were collected for the reaction $CH_3CHO \rightarrow CH_1 + CO$

	$[CH_{3}CHO]$ (mol/L)	Time (s)
	0.200	0
S	0.153	20
	0.124	40
	0.104	60
	0.090	80
	0.079	100
	0.070	120
	0.063	140
	0.058	160
	0.053	180
	0.049	200

Make a graph of concentration versus time and determine the reaction rate at 60 s and at 120 s. What can you conclude about the values obtained at 60 s and at

2. The following data were collected for the reaction $SO_2Cl_2 \rightarrow SO_2 + Cl_2$ at a certain temperature.

$[SO_2Cl_2]$ (mol/L)	Time (s)
0.100	0
0.082	100
0.067	200
0.055	300
0.045	400
0.037	500
0.030	600
0.025	700
0.020	800

Make a graph of concentration versus time and determine the rate of the reaction at t = 250 s and t = 625 s.