Problems: Relationship Between Concentration and Time for a First Order Reaction

Suppose that a reaction: A -----> products

is first order, then: Rate = $k [A]^1$ Equation 1 Rate = $-\Delta[A]$ Equation 2

Δt

Combining equation 1 and 2 ...

$$\begin{array}{rcl}
- & \Delta[A] \\
---- & = & k [A]^1 \\
\Delta t
\end{array}$$

Integration of this leads to ...

Rearranging this equation we obtain ...

$$\begin{array}{rcl}
\ln \left[\mathbf{A} \right]_{\mathbf{t}} & = & -\mathbf{k} \mathbf{t} & + & \ln \left[\mathbf{A} \right]_{\mathbf{t}} \\
\left(\mathbf{y} & = & \mathbf{m} \mathbf{x} & + & \mathbf{B} \right)
\end{array}$$

 $[A]_0$ = concentration of reactant A at a time = 0 (i.e when instrument readings started not necessarily at time = 0)

 $[A]_t$ = concentration of reactant A at a later time = t

A plot of $\ln [A]_t$ vs time, t will be a linear graph, slope = - k (the rate constant).

This integrated form of the equation is useful in three ways:

- 1. If $[A]_t / [A]_0$ is known in the lab, then k may be calculated.
- 2. If [A]₀ and k are known the [A]_t of material expected after time t may be determined.
- 3. If k is known, then the equation can be used to calculate the time elapsed until A achieves some pre-determined concentration, $[A]_t$.

Note from the integrated equation ...

- [A]_t
 is the fraction of the material remaining after the specified time period.
 [A]₀
- 2. The negative sign is because the ratio of $[A]_t$ / $[A]_0$ is less than one, because $[A]_t$ is always less than $[A]_0$.

Problems:

- 1. Cyclopropene, C_3H_6 , rearranges to propene by a first order reaction: Rate = k [cyclopropene]¹ Given the rate constant, $k = 5.4 \times 10^{-2} \, h^{-1}$, if the initial concentration of cyclopropene is $0.050 \, \text{moldm}^{-3}$.
- a) How many hours must elapse for the concentration to drop to 0.010 mol dm⁻³.
- b) What is the concentration after 8.8 min? (answer: (a) t = 30 h, (b) [] =)
- 2. H₂O₂ decomposes in dilute NaOH at 20 °C in a first order reaction ...

 $2 \text{ H}_2\text{O}_2$ -----> $2 \text{ H}_2\text{O}$ + O_2 Rate = k [H_2O_2] k = $1.06 \times 10^{-3} \text{ min}^{-1}$ If the initial concentration of H_2O_2 is 0.020 moldm^{-3} . What is the concentration of the H_2O_2 after exactly 100 min? (Answer = [H_2O_2] = 0.018 moldm^{-3})

3. Methyl isocyanide undergoes a first order isomerization to form methyl cyanide ... CH₂NC -----> CH₃CN

The reaction was studied at 199 $^{\circ}$ C. The initial concentration of CH₃NC was 0.0258 moldm⁻³ and after 11.4 min, analysis showed the concentration of the product to be 1.30 x 10⁻³ moldm⁻³. a) What is the value of the rate constant? (b) How long will it take for 90 % of CH₃NC to react?

(answer: (a) $k = 4.54 \times 10^{-3} \text{ min}^{-1}$ (b) t = 507 min)