Half-Life and First Order Reactions

The rate constant, k, is a good indicator of the speed of a chemical reaction. Another useful measure of reaction speed is the **Reaction Half Life** $(t_{1/2})$. The half-life of a reaction is the time required for the concentration of a reactant to decrease to one half of its initial concentration. All first-order reactions have constant half-lives. (A second order curve will have half-lives which get successively larger.)

Half-life has numerous uses such as:

It can be used to determine the order of a reaction.

Half-life indicates the stability of a reactant, the longer the half-life, the greater the stability of the reactant(s).

It can also be used to determine the rate constant of a first order reaction.

Half-life can also be associated with drug use as it is the time required for ½ the drug to be eliminated from the body. For example, the half-life of cocaine is only a few minutes whereas the half-life of marijuana is higher – marijuana can be detected up to 28 days after use because it is absorbed by fatty tissues thus making diffusion into the blood stream an extremely slow process.

For a reactant A, in a reaction that is first order in A, $t_{1/2}$ is the time when:

$$[A]_t = \frac{1}{2}[A]_0$$
 or $\frac{[A]_t}{[A]_0} = \frac{1}{2}$

By taking the natural log of both sides the result is:

$$\ln\frac{[A]_t}{[A]_0} = -kt$$

Now substituting the fact that $\frac{[A]_t}{[A]_0} = \frac{1}{2}$ when $t = t_{1/2}$, we have:

$$\ln(\frac{1}{2}) = -kt_{1/2}$$

$$0.693 = kt_{1/2}$$

$$t_{1/2} = \frac{0.693}{k} \Rightarrow \text{Equation 1}$$

Equation (1) shows that the half-life of a first order reaction is a constant and independent of the initial concentration of the reactant. Thus, it would take the same time for the concentration of the reactant to decrease from $1.0 \, \text{M}$ to $0.5 \, \text{M}$ as it would to decrease from $0.10 \, \text{M}$ to $0.05 \, \text{M}$. It also shows that the half-life indicates the magnitude of the rate constant. The shorter the half-life the larger the value of k, thus the faster the reaction will occur. This means that less time is required to reach the half-way point.

Two examples of half-life are:

¹²⁵Iodine has a half-life of 63 days where k = 0.011/day

Americium has a half-life of 430 years where k = 0.0016/year

Example 1

Given the reaction $2H_2O_2 \rightarrow H_2O + O_2$ where the rate is $k[H_2O_2]^1$ and the rate constant is $1.06 * 10^{-3}$ /min, find the half-life.

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.06*10^{-3}/\min} = 654 \min$$

This implies the following that if the concentration of H_2O_2 is 0.02 M then after 654 min the concentration will now be 0.01 M. After another 654 min the concentration will now be 0.005 M.

In summary:

- a) After one half-life \rightarrow 50% remains \rightarrow 0.01M \rightarrow 50% of the reactant has been consumed
- After two half-lives \rightarrow 25% remains \rightarrow 0.005M \rightarrow 75% of the reactant has been consumed
- c) After three half-lives \rightarrow 12.5% remains \rightarrow 0.0025M \rightarrow 87.5% of the reactant has been consumed

Question 1

Sucrose $C_{12}H_{22}O_{11}$ decomposes to fructose and glucose in acid solution with the rate law: Rate = $k[sucrose]^1$; where k = 0.208/hour at 25°C.

- a) Find the half-life of sucrose under these conditions.
- b) Calculate the time required for 87.5% of the initial concentration of sucrose to disappear.

Question 2

The rate constant for the transformation of cyclopropane to propene is $5.40 * 10^{-2}$ /hour.

- a) What is the half-life of the reaction?
- b) What fraction of cyclopropane remains after 51.2 hours?
- c) What fraction remains after 18.0 hours?

Question 3

The decomposition of ethane, C_2H_6 , to methyl radicals is a first order reaction with a rate constant of 5.36 * 10^{-4} /second at 700°C. Calculate the half-life of the reaction $(C_2H_6 \rightarrow 2CH_3^{\circ}_{(g)})$ in minutes.

Question 4

Calculate the half-life of the decomposition of $2N_2O_5 \rightarrow 4NO_2 + O_2$ where the rate constant is 5.7 * 10^{-4} /second. Also, calculate E_A using the Arrhenius equation given that A = 25/second at 834°C.

Question 5

A certain first order reaction has a half-life of 20.0 minutes.

Answers

1a)
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.208} = 3.33 \ hours$$

b) After three half-lives 12.5% of the reactant will remain i.e. 87.5% will have been used up. Therefore the time required is three times the half-life, which is approximately 9.99 hours.

2a)
$$t_{1/2} = \frac{0.693}{5.40*10^{-2} / hour} = 12.8 hours$$

b) 51.2 hours is equal to four half-lives meaning that 1/16 of the original amount will remain because $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = 1/16$.

c)
$$\ln(\frac{[A]_t}{[A]_0}) = -kt = -(5.40*10^{-2}/hour)(18 hours) = -0.97$$

Therefore, the fraction remaining = $\frac{[A]_t}{[A]_0} = e^{-0.97} = 0.38$

3)
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{5.36*10^{-4}/\text{sec}} = 1.29*10^3 \text{ sec} = 21.5 \text{ min}$$

4)
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{5.7*10^{-4}/\text{sec}} = 1.21*10^3 \text{ sec} = 20.3 \text{ min}$$

$$k = Ae^{-E_A/RT}$$

$$\ln(\frac{k}{A}) = -\frac{E_A}{RT}$$

$$E_A = -\frac{\ln(\frac{k}{A})}{RT}$$

$$E_A = -\frac{\ln(\frac{5.7*10^{-4}/\text{sec}}{25/\text{sec}})}{(8.314)(1107K)}$$

$$E_A = 1.16 * 10^{-3}$$

5a)
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{20 \text{ min}} = 3.47*10^{-2} / \text{min}$$

b) If 75% is consumed than 25% remains (0.25) so:

$$\ln(\frac{[A]_t}{[A]_0}) = -kt$$

$$\ln(\frac{0.25}{1}) = -(3.47*10^{-2} / \min) * t$$

t = 40 minutes

Half-life for a Second Order Reaction

The rate of a second order reaction is defined by: $k[A]^2$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

Since one half-life has elapsed when $[A]_t = \frac{[A]_0}{2}$:

$$\frac{2}{[A]_0} - \frac{1}{[A]_0} = kt_{1/2}$$

Solving for the initial $t_{1/2}$ gives:

$$t_{1/2} = \frac{1}{k[A]_0} \rightarrow \text{Equation (2)}$$

Equation (2) tells us that half-life depends upon the initial concentration of the reactant so one can shorten the half-life by increasing the initial concentration. For example, if the initial concentration is doubled the half-life is halved.

IB Questions

8a) The rate of a decomposition is studied by measuring the reactant concentration at certain times.

Time/min	0	20	40	60	80	100 120
Conc/10 ⁻² mol dm ⁻³	1	0.69	0.48	0.34	0.24	0.16 0.11

- i) Plot a graph of concentration versus time.
- ii) How could the rate be determined from the graph at any selected time? Explain the shape of the graph in terms of the rate.
 - What is meant by half-life? Measure three half-life values from the graph. Deduce the order of this reaction.
 - Calculate a value of the rate constant from the half-life and one from the initial rate of reaction.