Review: Rate of Reaction

- Consider the following reaction: $2 H_2O_2 \rightarrow 2 H_2O + O_2$
- What is the definition of :
 - Reactant = $-\frac{\Delta[R]}{\Delta t}$
 - $\circ \quad \text{Products} = + \frac{\Delta[F]}{\Delta t}$

- Experimental methods to follow the progress of reactions
 - Volume of gas- Find volume of oxygen using a gas syringe
 - o Pressure of gas- Find pressure of oxygen using a manometer
 - o Gravimetric- Find changes in mass
 - o pH
 - Conductivity
 - o Thermometric
- Rate Expressions for the above reaction are:

$$\circ + \frac{\Delta[0_2]}{\Delta t}$$
$$\circ + \frac{1}{2} \frac{\Delta[H_2 O]}{\Delta t}$$

$$\circ \quad -\frac{1}{2} \frac{\Delta[H_2 O_2]}{\Delta t}$$

- Calculations:
 - \circ E.g. Rate of Production of O₂ = 0.15 mol/L.s.

$$H_2O_2 = ?$$

o mol : mol

 O_2 : H_2O_2

- 1/0.15:2/x
- x = -0.30 mol/L.s. (negative because it is a reactant and [H₂O₂] goes down as [O₂] goes up)

- Factors that affect the rate of reaction:
 - Concentration
 - Surface area
 - Temperature
 - Catalyst
 - Pressure of gases
 - Nature of reactants
 - Explanation of these factors in terms of:
 - Collision Theory
 - Maxwell-Boltzmann Distribution of Kinetic Energies
- Reaction Mechanism:
 - Define:
 - Rate
 - Rate Determining step
 - Elementary step
 - Intermediate step
 - Order
 - Molecularity
 - Rate Law
 - Rate Constant
 - Overall Equation
 - Be able to draw Potential Energy diagrams: given Ea (forward) = 120 kJ, Ea (reverse) = 260 kJ
 - Determination of Order .: Rate Law
 - Derive Mechanism given Rate Law and Overall Equation
- Integrated Rate Law:
 - $\circ \quad \ln [\mathbf{A}]_{t} = -\mathbf{k} t + \ln [\mathbf{A}]_{0}$
 - Half Life: $t(\frac{1}{2}) = 0.693 / k$
 - Calculation Type: (a)(b)(c)(d): for the above reaction, given initial concentration of $H_2O_2 = 0.11$ mol/L and its half life is 300 s.
 - o a) Calculate k
 - o b) Calculate [H₂O₂] after 2 minutes
 - \circ c) Calculate how long it will take for [H₂O₂] = 0.11 mol/L
 - o d) Calculate how long it will take for $[H_2O_2]$ to decompose 76%?

- o Graphs
- 1st Order Reactions

• For graphs on Zero Order: Please check your notes

- Catalysis:
 - Homogeneous
 - Heterogeneous
 - Mechanism of each type of catalysis
- Arrhenius Equation (IB only)