Oxidation: loss of electrons eg. Mg \rightarrow M²⁺ + 2e-Reduction: gain of electrons eg. O + 2e⁻ -> O²⁻

OIL RIG

Oxidation Rules:

- \blacksquare Group 1 elements have an oxidation of +1
- Group 2 elements have an oxidation of +2
- Aluminum +3
- Silver +1
- Hydrogen +1, except if it is combined with a metal, then it is -1
- Oxygen -2, excpet if it is a peroxide(1 extra oxygen), then it is -1
- Sum of oxidation numbers in a molecule is always equal to 0
- In a polyatomic ion, the sum of oxidation numbers is equal to the charge on the ion

■ eg. HNO₃
$$H + N + 3(O) = 0$$

+1 ? -2
= -6

- anything oxidized acts as reducing agent
- more reactive the metal, better the reducing agent

Activity Series

Metals:

top to bottom, reactive to unreactive

The more reactive a metal is the greater is its ability to displace another metal from a substance

eg. Metals: MNOP

 $M(NO_3)_2 N(NO_3)_3 O(NO_3) PNO_3)_2$

- 1. N placed in O and M -- all reacted
- 2. P placed in M, N, and O -- no reactions
- 3. M placed in N and O -- reaction in O, not N

Therefore, N - M - O - P

Halogens:

exact same as metals, except reversed order

Balancing Equations:

■ equal number of specific atoms on both sides of equation

Rules:

- 1. Write the equation with the reactants on the left and the product on the right
- 2. Balance the atoms that only occur in one molecule on each side by choosing your appropriate coefficient.
- 3. Balance atoms, one kind at a time.
- 4. Balance atoms which are in their elemental form last (O₂, H₂, Cu, P₄ etc.)
- 5. Include the symbols and formulas of all the elemtns and compounds that are used as reactants and formed as products
- 6. Balance the metals first, polyatomic ions second, nonmentals except oxygen and hydrogen, then oxygen and hydrogen are balanced last