## **Solutions:**

Homogenous: constant compositi0n

Solute: substance being dissolved (smaller quantity, usually)

Solvent: substance doing dissolving

Solubility: maximum amount of solute that can be dissolved at a given temp. in 100g of the solvent.

~ SOLIDS → increases as temp. increases (generally)

 $\sim$  GASES  $\rightarrow$  decreases as temp. increases.

## Formulas:

- 1. n=cv # of moles (mol) = concentration(mol/L) x volume (L)
  - IB uses  $dm^3$  instead of L  $(1L = 1dm^3)$
  - Higher the concentration, higher the molarity

2. mass % = 
$$\frac{\text{mass of solute (g)}}{\text{mass of solute + mass of solvent}}$$
 x 100

3. volume 
$$\% =$$
volume of solute x 100 solume of solution

4. day,

## making solutions:

ex. Calculate the volume of water required and calculate the solution required when 5.5% beer is diluted to a high glass container with 100mL of water, diluted into 1.25%

$$\begin{array}{ccc} \underline{stock} & \underline{diluted:} \\ c = 5.5\% & c = 1.25\% \\ v = ? & v = 100 mL \\ & C_1V_1 = C_2V_2 & the volume of water in the flask is: \\ & V_1 = \underline{(1.25)(100)} & 100 - 22.7 = 77.3 mL \\ & \underline{5.5\%} \\ & = 22.7 mL \ of \ stock \ beer \end{array}$$

mass of gravimetric analysis

problems: