SCH4U 2005 TO REVIEW IN EACH UNIT BY SHELLYZA MOLEDINA

ATOMIC STRUCTURE

- Dalton, Thompson, Rutherford, and Bohr
- Atomic Radius, Electronegativity, Melting Point Boiling Point, Ionization Energy and Electron Affinity Periodic Table Trends
 - *The four quantum numbers: n, l, ml, ms*
 - Electron configuration
 - Wave mechanical model of the Atom
 - Atomic Spectroscopy: $E=hf c=f\lambda$
 - \blacksquare $E=-(constant)/n^2$
 - Relation of λ with frequency
 - Lewis Diagrams, octet rule, resonance
 - VSPER
 - *Ionic bonds, molecular crystals*
 - IMFA's
 - Giant Covalent. Metallic

TEST: ATOMIC STRUCTURE (REVIEW)

ORGANICS

- Organic Nomenclature (see table and handout)
- Reaction Mechanisms: Alkanes, Alkenes, Alcohols, Aromatic, complete and incomplete combustion
- Reaction types: addition, Markovnikov's Rule, substitution, oxidation, dehydration, condensation
 Structural and Geometric Isomerism
 - Polymerization: addition and condensation, peptide linkage.
 - More hybridization

■ Test: ORGANICS AND ORGANIC NOMENCLATURE

THERMOCHEMISTRY

- Kinetic and Potential Energy, Definition of Enthalpy
- Specific heat capacity, $Q = mc\Delta T$, also recall: $Q = C\Delta T$
 - $c = heat \ capacity/mass \ \{c=C/m\}$
 - molar heat of fusion, solidification, condensation...
- calculating enthalpy changes for warming substances and for changes of state
- experimental determination of enthalpy change, measuring enthalpy change solution
 - Enthalpy: standard heats of reaction
 - Hess's Law of heat summation, and heats of formation
 - Bond Energies
- Experimental determination of enthalpies of reaction, neutralization, combustion
 - TEST: Thermochemistry

KINETICS

- Rate=change in conc/time, rate of rxn = ...average number of mols per L of reactants being consumed or products being formed...
 - Rate curves: explanations using collision theory
 - Reaction Rates and Stoichiometry: relative rates
 - Reaction conditions and rate (nature, concentration, etc) factors that affect rate of rxn
 - Collision theory: molecular orientation and kinetic energy: Ea
 - Maxwell/Boltzmann Distribution: effect of temp and catalyst
 - Energy and Kinetics activation energy and 'rate determining (slow) step'
- Catalysis: heterogeneous, homogeneous, adsorption and intermediate compound theory
 - Reaction Mechanisms: Determining the order of the rxn
 - *Determining the rate law of the rxn*
 - TEST: Kinetics

EQUILIBRIUM

- Dynamic equilibria, macroscopic changes and microscopic changes
 - Phase change and solute-solution equilibria
- Rate of forward rxn is equal to rate of reverse reaction at equilibrium
- Factors that affect equilibrium: concentration, temperature, pressure, volume
 - *NO effect with catalyst why?*
- Le Chatelier's principle: predicting shifts in equilibrium due to changes in: conc., press, volume, temp., catalyst, inert gas at constant volume
- Quantitative Equilibrium Kc and the equilibrium law: writing equilibrium constant expressions.
 - Large Kc value means... small Kc value means...
 - Effect of temperature changes on the numerical value of Kc
 - ICE charts: calculation types
 - *The reaction quotient, Q*
 - O>Kc means... O=Kc means... O<Kc means
 - Explanation of shifts in equilibrium using experimental data.
 - Test: Equilibrium

EQUILIBRIUM: SOLUBILITY

- Solution Equilibria factors that affect solubility
 - Saturated / unsaturated
- Ksp: the solubility product constant, a low Ksp means... a high Ksp means...
- Ksp problems: calculating Ksp from molar solubility data, molar solubility from Ksp data, common ion effect and solubility, determining if a precipitate will form: ion product-- Q
 - Quiz: Solubility

ACID-BASE

- Properties of Acids and Bases
- Arrhenius, Bronsted-Lowry, and Lewis definitions of acid-base,
 - conjugate acid-base pairs, amphiprotic
- Strong and weak acid base pairs, significance of numerical value of Ka and Kb
 - \blacksquare Ka and Kb, pKa and pKb
 - pOH and pH relationship
 - \blacksquare Kw and pKw, Ka x Kb = Kw
- Titration: experimental techniques, definitions: tirant, standardization, indicator, end point, equivalence point.
 - **■** TEST: Acid-Base

REDOX

- Definitions: Assigning Oxidation Numbers
- Balancing using Oxidation Numbers, Ion-electron method
 - Electrochemical Cells