FINAL REVIEW: SCH4U: ANSWERS

THERMOCHEMISTRY (CH.5)

1. a)
$$Q = 33.45 \text{ KJ}$$

= 3.345 x 10 4 J

$$M = 244.0 g$$

$$\Delta T = T_2 - T_1$$
= 70.9 - 31.8 ° C
= 39.1 ° C
$$c = \frac{Q}{m\Delta T}$$

$$= \frac{3.345 \times 10^4 J}{(244.0g)(39.1^\circ C)}$$
= 3.506 J/g°C
$$c = 3.506 J/g^\circ C$$

$$c_p^{(b)} = C.M$$

$$= (3.506 \frac{J}{g^{\circ} C})(27.0 \frac{g}{mol})$$

$$= 94.67 J/mol^{\circ}C$$

$$\therefore c_p^o = 94.7 J/mol^o C$$

2. a)
$$2C_8H_8(g) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(l)$$

$$\Delta H^o = \Delta H^o{}_{f(p)} - \Delta H^o{}_{f(R)}$$

$$-4597 = [16(-393.5) + 18(-285.8)] - [2x + 25(0.0)]$$

$$-4597 = -11440.4 - 2x$$

$$x = -3421.7$$

$$\Delta H^{o}_{f} = -3422 \text{ kJ}$$

$$\Delta H^{0}(kJ)$$

$$Fe_2O_3(s) \rightarrow 2 FeO(s) + \frac{1}{2} O_2(g)$$

$$2 \text{ FeO (s)} \rightarrow 2 \text{ Fe (s)} + O_2(g)$$

$$3 \text{ CO (g)} \rightarrow 3 \text{ C (s)} + 3/2 \text{ O}_2(\text{g})$$

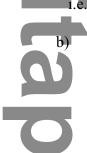
$$+3/2 (+221.0)$$

$$3 \text{ C (s)} + 6 \text{ H}_2(g) \rightarrow 3 \text{ CH}_4(g)$$

$$3 \text{ CH}_4(g) + 6 \text{ O}_2(g) \rightarrow 3 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(g)$$

$$6 \text{ H}_2\text{O(g)}$$
 → $6 \text{ H}_2\text{(g)} + 3 \text{ O}_2\text{(g)}$

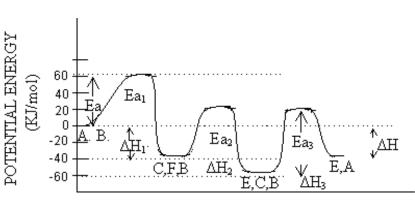
 $:: \Delta H^0 = 542 \text{ kJ}$



$$\Delta H < 0$$

&
$$\Delta S > 0$$

Minimum enthalpy


& maximum entropy

- (i) $\Delta H > 0$: tendency towards increasing enthalpy : does NOT favour spontaneity
- (ii) $\Delta S > 0$: tendency towards increasing entropy (More moles gas on product side) : favours spontaneity
- (i) Graph (a) represents an exothermic reaction (ii) Graph (a) is the fastest, since lowest Ea

RATE OF REACTION

Temperature, concentration of reactants, Nature of reactants, presence of catalyst Collision Theory to explain each: b)

REACTION PATHWAY

b)
$$3B \xrightarrow{A} 2E$$

c)
$$\Delta H = -41 \, kJ$$

- RDS is step III, since largest Ea d)
- C and F e)
- f)
- Steps I & II are exothermic g)

b) zero order c)
$$1^{st}$$
 order d) Rate = $k [C_4H_{11}CF]^1$

$$\frac{5.5 \times 10^{-4} \, mol/L \, / \, s}{0.10 \, mol/L}$$

$$= 5.5 \times 10^{-3} \, s^{-1}$$

f) molecularity is 1 or unimolecular

CHEMICAL EQUILIBRIUM

$$a) \quad Kc = \frac{[H_2O]}{[CO][H_2]}$$

b)
$$Kc = \frac{5.4 \times 10^{-4}}{(3.2 \times 10^{-3})(2.5 \times 10^{-4})}$$

$$Kc = 675$$

a)
$$Kc = \frac{[Na^+]}{[H^+]}$$

b)
$$Kc = [Al^{3+}]^2 [SO_4^{2-}]^3$$

- a) same as physical or chemical change

- (i) homogeneous
- (ii) heterogeneous

$$Keq = \frac{[C]^3[D]}{[A]^2[B]}$$

		u
b)	7

	[A]	[B]	[C]	[D]
	(mol/L)	(mol/L)	(mol/L)	(mol/L)
Initial	1.75	1.75		
Change	-0.433	-0.217	0.65	0.217
Equilibrium	1.317	1.533	0.65	0.217

$$Keq = \frac{(0.65)^3(0.217)}{(1.317)^2(1.533)}$$
$$= 0.02241$$
$$Keq = 2.24 \times 10^{-2}$$

5. Low temperature, Low volume, High pressure, decrease [NH₃], increase [N₂] or [H₂]

6.			
	$[N_2]$	$[O_2]$	[NO]
01	(mol/L)	(mol/L)	(mol/L)
Initial	0.1375	0.0875	
Change	- X	-x	+ x
Equilibrium	0.1375 - x	0.0875 - x	Х

Let x represent [NO]_{equilibrium} in mol/L

$$Kc = \frac{[NO]}{[N_2][O_2]}$$
 :: $Kc < 1.0 \times 10^{-3}$

$$\therefore Kc < 1.0 \times 10^{-3}$$

$$\therefore 0.1375 >> x$$

$$2.51 \times 10^{-7} = \frac{x}{(0.1375 - x)(0.0875 - x)}$$

$$2.51 \times 10^{-7} = \frac{x}{(0.1375)(0.0875)}$$

$$x = 3.0198 \times 10^{-9}$$

$$[NO] = 3.02 \times 10^{-9} \, mol \, / \, L$$

$$[N_2] = 0.138 \, mol \, / \, L$$

$$[O_2] = 8.75 \times 10^{-2} \ mol / L$$

SOLUBILITY EQUILIBRIUM

a)
$$2 \text{ K}_3 \text{PO}_4(\text{aq}) + 3 \text{ Mg(NO}_3)_2(\text{aq})$$
 \longrightarrow $\text{Mg}_3(\text{PO}_4)_2(\text{s}) + 6 \text{ KNO}_3$

b)
$$6K^{+}(aq) + 2 PO_{3}^{-1}(aq) + 3 Mg^{2+}(aq) + 6 NO_{3}^{-1}(aq) \rightarrow Mg_{3}(PO_{4})_{2}(s) + 6 K^{+}(aq) + 6 NO_{3}^{-1}(aq)$$

c)
$$3 \text{ Mg}^{2+}(aq) + 2 \text{ PO}_4^{3-}(aq) \rightarrow \text{Mg}_3(\text{PO}_4)_2(s)$$

d)
$$Mg_3(PO_4)_2(s) \rightarrow 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$$

e) Ksp =
$$[Mg^{2+}]^3 [PO_4^{3-}]^2$$

2.
$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 $Ksp = [Ca^{2+}][CO_3^{-2}]$ Let x represent $[Ca^{2+}]$ in mol/L
 $8.7 \times 10^{-9} = (x)(x)$
 $x = 9.33 \times 10^{-5}$
 $[Ca^{2+}] = 9.33 \times 10^{-5}$ mol/L
 $= 9.3 \times 10^{-6}$ mol/100 mL

3. $Ag_2CrO_4(s) \rightleftharpoons 2 Ag^+(aq) + CrO_4^{-2-}(aq)$
 $Ksp = [Ag^+]^2[CrO_4^{-2-}]$ Let x rep $[CrO_4^{-2-}]$ in mol/L
 $5.02 \times 10^{-13} = (2x)^2(x)$ Than $2x$ rep $[Ag^+]$ in mol/L
 $x = 5.007 \times 10^{-5}$ and $x = 1.66 \times 10^{-5}$ mol/L
 $x = 5.007 \times 10^{-5}$ mol/ $x = 1.66 \times 10^{-2}$ g/L

4. $Ca(NO_3)_2 = \frac{50.0 \text{ mL}}{200.0 \text{ mL}} \times 0.0420 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{50.0 \text{ mL}}{200.0 \text{ mL}} \times 0.0420 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$
 $Ca(NO_3)_2 = \frac{150.0 \text{ mL}}{200.0 \text{ mL}} \times 0.00810 \text{ mol/L}$

TRIAL Ksp < ACTUAL Ksp $6.379 \times 10^{-5} < 2.61 \times 10^{-4}$ \therefore precipitate will NOT form

= (0.0105)(0.006075)

 $=6.379\times10^{-5}$

Trial $Ksp = [Ca^{2+}][SO_4^{2-}]$

5. BaF₂(s)
$$\longrightarrow$$
 Ba ²⁺(aq) + 2 F ⁻(aq) Ba(NO ₃)₂(aq) \longrightarrow Ba ²⁺(aq) + 2 NO ₃ (aq)

.: common ion is the Ba 2+

$$Ksp = [Ba^{2+}][F^{-}]^{2}$$

$$1.71 \times 10^{-6} = (0.750)[F^{-}]^{2}$$

$$[F^{-}]^{2} = 2.28 \times 10^{-6}$$

$$[F^{-}] = 1.51 \times 10^{-3} \text{ mol/} L$$

IONIC EQUILIBRIUM

H₂PO₄ - strongest, most oxygens in the formula

2.

Definition	ACID	BASE
ARRHENIUS	H ⁺ in H ₂ O	OH⁻ in H₂O
BRONSTED – LOWRY	H ⁺ donor	H ⁺ acceptor
LEWIS	e pair acceptor	e ⁻ pair donor

3. a) Na⁺ would NOT hydrolyze NaOH strong base

C₂H₃O₂ would hydrolyse to form a base

: HC₂H₃O₂ weak acid

b) sodium acetate solution would be basic

4.
$$CH_3COOH(aq) + H_2O_{(1)}$$
 \longleftrightarrow $H_3O^+(aq) + CH_3COO^-(aq)$

$$H_3O^+(aq) + CH_3COO^-(aq)$$

	[CH ₃ COOH]	[H ₃ O ⁺]	[CH ₃ COO ⁻]
0	(mol/L)	(mol/L)	(mol/L)
Initial	0.0020		
Change	-0.056 × 0.002	0.056×0.002	0.056×0.002
Equilibrium	1.89×10^{-3}	1.12×10^{-4}	1.12 × 10 ⁻⁴

$$Ka = \frac{[H^+][CH_3CO_2^-]}{[CH_3CO_2H]}$$
$$= \frac{(1.12 \times 10^{-4})(1.12 \times 10^{-4})}{1.89 \times 10^{-3}}$$
$$= 6.64 \times 10^{-6}$$

5.
$$[H^{+}]_{i} = \frac{17.5 \, mL}{28.0 \, mL} \times 0.20 \, mol \, / \, L$$

$$= 0.125 \, mol \, / \, L$$

$$[OH^{-}]_{i} = \frac{10.5 \, mL}{28.0 \, mL} \times 0.12 \, mol \, / \, L$$

$$= 0.045 \, mol \, / \, L$$

$$[H^{+}] = [H^{+}]_{i} - [OH^{-}]_{i}$$

$$= 0.125 - 0.045 \, mol \, / \, L$$

$$= 0.0800 \, mol \, / \, L$$

$$pH = 1.10$$

 $pOH = 12.9$
 $[OH^{-}] = 1.25 \times 10^{-13} mol / L$

6.	l
Γ <i>111</i>	$[T] = \frac{m/M}{M}$
	$V = \frac{V}{V}$
	$\frac{39.98 g}{20.0 g/mol}$
	- 5.00 <i>L</i>
	= 3.998 mol / L

3	[HF]	[H ⁺]	[F ⁻]
3	(mol/L)	(mol/L)	(mol/L)
Initial	3.998		
Change	- X	X	X
Equilibrium	3.998 - x	X	X

Let x represent [H⁺] in mol/L

$$Ka = \frac{[H^{+}][F^{-}]}{[HF]}$$

$$2.56 \times 10^{-4} = \frac{(x)(x)}{3.998 - x}$$

$$x = 9.9896 \times 10^{-3}$$

$$[H^{+}] = 9.99 \times 10^{-3} \ mol / L$$

$$pH = -\log [9.99 \times 10^{-3}] =$$

Now: Try questions # 7 — 14 on your own !!!

BONDING & SHAPES (CH 2,3)

1c) Bent: 4 charge centers, however two lone pairs cause greater repulsion with the bonding pairs

2.

CHCl,	H C C	tetrahedral	Polar, 109.5 °, individual bond polar forces that do not cancel.
BrO ₃	1- Br 0	(Trigonal) pyramidal	Polar, 107 ⁰
SiS ₂	s=si=s	linear	Non-polar, 180 ⁰ ; all polar forces cancel
ICI 5		square based pyramid	Polar

CO ₃ ² -	C	trigonal planar	polar
CrI 6	I I I	octahedral	non-polar
PBr 4	Br P Br Br Br	tetrahedral	polar

3. a) S^{2} : $1s^2 2s^2 2p^6 3s^2 3p^6$, Fe³: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$, Br⁻¹: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}4s^24p^6$

.COM