QUIZ I: THERMOCHEMISTRY

SCH4UE 2002-2003 Total Score: /20) **Matching** (6)

Name: _____

Find the most appropriate match between the item in Column A and the description of that item in Column B.

<u>Column A</u>	<u>Column B</u>
1. $\Delta H = +25 \text{ kJ}$	a. standard conditions for reporting ΔH^0
2. $\operatorname{Na}_{(s)} + 1/2 \operatorname{Cl}_{2(g)} \rightarrow \operatorname{NaCl}_{(s)}$	b. standard enthalpy of formation for an element in its most stable state at 100 kPa and 25 °C
3. $q_p = \Delta H$	c. standard enthalpy of formation of a compound
4. $q = mc\Delta T$	d. heat calculated at constant pressure
5. 100 kPa and 25 ^o C	e. endothermic process
6. $\Delta H_{f}^{0} = 0.00 \text{ kJ}$	f. formula for calculating the amount of heat transferred.

Multiple Choice (10)

- 7. The specific heat of silver is 0.226 J g⁻¹⁰C⁻¹. Calculate the heat required to raise the temperature of 30.0 g of silver metal from 18.2 °C to 35.6 °C.
 a. 118 J
 b. 123 J
 c. 241 J
 d. 1.08 kJ
- 8. Given the following thermochemical equation: H_{2(g)} + 1/2 O_{2(g)} → H₂O_(l) ΔH⁰ = -285.8 kJ How much heat is evolved when 100.0 g of H₂O_(l) are formed from the combustion of hydrogen gas and oxygen gas? a. -51.44 b. -285 kJ c. -1587 kJ d. -2297 kJ
- 9. $H_{2(g)}$ and $Cl_{2(g)}$ react according to the following equation, forming $HCl_{(g)}$:
 - $H_{2(g)} + Cl_{2(g)} \longrightarrow 2 HCl_{(g)} \Delta H^0 = -92.0 \text{ kJ}$ If $H_{2(g)}$ and $Cl_{2(g)}$ are mixed in a thermally insulated vessel, the reaction that occurred would be:
 - a. endothermic, and the temperature of the reaction system would rise.
 - b. endothermic, and the temperature of the reaction system would fall.
 - c. exothermic, and the temperature of the reaction system would rise.
 - d. exothermic, and the temperature of the reaction system would fall.
- 10. Given the following thermochemical equation:
- $2 \operatorname{Al}_{(s)} + 3/2 \operatorname{O}_{2(g)} \xrightarrow{} \operatorname{Al}_2 \operatorname{O}_{3(s)} \operatorname{A}_2 \operatorname{O}_{3(s)} \xrightarrow{} \operatorname{Al}_2 \operatorname{O}_{3(s)} \xrightarrow{} \operatorname{A}_2 \operatorname{O}_{3(s)} \operatorname{A}_2 \operatorname{O}$

nickel (II) carbonate, NiCO₃:

a.
$$\operatorname{Ni}_{(s)} + \operatorname{C}_{(g)} + \frac{3/2}{2}\operatorname{O}_{2(g)} \longrightarrow \operatorname{NiCO}_{3(s)}$$

b. $\operatorname{Ni}_{(s)} + \operatorname{C}_{(s)} + \frac{3/2}{2}\operatorname{O}_{2(g)} \longrightarrow \operatorname{NiCO}_{3(s)}$
c. $2\operatorname{Ni}_{(s)} + 2\operatorname{C}_{(s)} + 3\operatorname{O}_{2(g)} \longrightarrow 2\operatorname{NiCO}_{3(s)}$
d. $\operatorname{Ni}_{(s)} + \operatorname{CO}_{3^{-2}(aq)} \longrightarrow \operatorname{NiCO}_{3(s)}$

- 12. What is the specific heat capacity for metal X from the following information. 95 g of metal at 75 $^{\circ}$ C are placed in 50 g of water, (specific heat capacity of water, c = 4.184 J g⁻¹ $^{\circ}$ C⁻¹). The final temperature of the water is 23 $^{\circ}$ C.
 - a. 23 b. 0.21 c. 0.76 d. 3.6
- 13. The average fuel value, (i.e. the energy released upon ingestion), of sugar is 17 kJ g⁻¹. A 2.0 L jug of sweetened Kool-Aid contains 400 g of sugar. What is the fuel value (in kJ) of a 500 cm³ serving of Kool-Aid? (Assume the sugar is the only fuel source.)
 - a. 4.2×10^4 b. 1.7×10^3 c. 1.7×10^6 d. 1.7×10^2
- 14. Which one of the following changes will have a positive value of ΔH^0 ?
 - a. $H_2O_{(1)} \xrightarrow{P} H_2O_{(s)} \xrightarrow{P} CO_{2(g)} + 2H_2O_{(g)}$ b. $CH_{4(g)} + 2O_{2(g)} \xrightarrow{P} CO_{2(g)} + 2H_2O_{(g)}$ c. $2H_2O_{(1)} \xrightarrow{P} 2H_{2(g)} + O_{2(g)}$ d. $2 C_4H_{10(1)} + 13O_{2(g)} \xrightarrow{P} 8 CO_{2(g)} + 10H_2O_{(g)}$
- 15. The value of ΔH^0 for the following reaction is 336 kJ. Determine the amount of heat in kJ exchanged with the surroundings when 23.0 g of HCl_(g) is formed.

$$CH_{4(g)} + 3Cl_{2(g)} \longrightarrow CHCl_{3(l)} + 3HCl_{(g)}$$

a. 177 b. 2.57 x10³ c. 70.7 d. 211

16. A 0.1326 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat capacity of the calorimeter plus water was 5.760 J ^oC⁻¹. If the temperature rise of the calorimeter with water was 0.570 ^oC, calculate the enthalpy of combustion of magnesium.

$$Mg_{(s)} + 1/2 O_{2(g)} \longrightarrow MgO_{(s)}$$

a. $-3280 \text{ kJ mol}^{-1}$ b. 435 kJ mol^{-1} c. 106 kJ mol^{-1} d. -602 kJ mol^{-1}

<u>**Problem**</u> (4)

1. When a 4.25 g sample of solid ammonium nitrate dissolves in 60.0 g of water in a coffee cup calorimeter, the temperature drops from 22.0 °C to 16.9 °C. Calculate Δ H (in kJ mol⁻¹ NH₄NO₃) for the solution process:

 $NH_4NO_{3(s)} \longrightarrow NH_4^{+1}{}_{(aq)} + NO_3^{-1}{}_{(aq)}$ Assume that the specific heat of the solution is the same as that of pure water. Write a thermochemical equation dissolution of ammonium nitrate.