Table of Contents: Lab Work

SCH4UE 08-09

IA Legend: Planning = Design criteria

DCP = **Data** Collection and Processing criteria

CE = Conclusion and Evaluation

MS = **Manipulative** skills

Lab#	Title of Investigation	Course Unit	Criteria Tested
1	Thickness of Aluminum Foil	Measurement + Data	
2	Number of molecules in H ₂ O, Chalk, and Candy	Quantitative Chemistry	
3	Percent Composition of MgO	Quantitative Chemistry	
4	Formula of a hydrate, Epsom salt	Quantitative Chemistry	Planning
5	Empirical Formula of MgCl ₂	Quantitative Chemistry	
6	Simulation of an Air Bag	States of Matter	Planning
7	Volume vs. Temperature Graph: Computer Analysis	States of Matter	DCP, ICT
8	% Sodium hydrogen carbonate in an Alka-Seltzer Tablet	States of Matter	
9	Pressure required to pop popcorn	States of Matter	Planning
10	Mass Relationship in an equation: Aluminum and Copper (II) chloride dihydrate	Quantitative Chemistry	MS, DCP
11	Determination of Solubility of a Salt	Solution Chemistry / Acids and Bases	MS
12	Making a Solution	Solution Chemistry / Acids and Bases	MS
13	Dilution of a Solution	Solution Chemistry / Acids and Bases	MS
14	Determination of Volume of gas at STP: Mg + HCl	States of Matter	MS
15	Determination of Molar Volume from experimental Data	States of Matter	
16	Estimation of concentration of a Solution using a spectroscope	Solution Chemistry / Acids and Bases	DCP
17	Double Displacement Reactions: Using Solubility Rules	Solution Chemistry / Acids and Bases	

18	Using Solubility Graphs:	Solution Chemistry /	ICT
	Computer Analysis	Acids and Bases	
19	Gravimetric Analysis:	Solution Chemistry /	DCP, CE
	$Pb(NO_3)_{2(aq)} + KI_{(aq)}$	Acids and Bases	
20	Stoichiometry of a Reaction:	Solution Chemistry /	Planning, Lab
	$Na_2CO_3 + CaCl_2$	Acids and Bases	Quiz
21	Titration: Standardization of	Acids and Bases	
	NaOH using HCl		
22	Observing the Hydrogen	Atomic Structure	
	Spectrum		
23, 24,	Qualitative Analysis: 3 hours		
25			
26	Electrolytes: Strong and Weak	Acids and Bases	ICT
	Acid-Base		
27	Titration Curve for strong acid	Acids and Bases	
	and strong base		
28	Lab: Testing for Polarity of	Bonding and Atomic	
	Compounds	Structure	
29	Lab Activity: Polarity of	Bonding and Atomic	
	Molecules and IMFA's	Structure	
30	Testing the structure of Ionic,	Bonding and Atomic	Planning
	molecular covalent, Network	Structure	
	and metallic substances		
31	Enthalpy of Ionic substances:	Atomic Structure /	
	Lattice Energy vs. Hydration	Energetics	
	Energy		
32	Enthalpy of a reaction: Zn +	Energetics	
	CuSO ₄		
33	Hess's Law: NaOH + HCl	Energetics	
34	Assignment: Molecules and	Bonding and Atomic	
	Networks	Structure	
35	How Much Lab	Quantitative Chemistry	Planning
36	Enthalpy of a chemical	Energetics	
	reaction: Mg + HCl		
37	Paraffin Wax Lab	Energetics	Planning, CE
38	Lattice Energy	Energetics	ICT
39	Alcohols	Energetics	ICT
40	Comparison of Energies	Energetics	
	Physical/Chemical/Nuclear		
	Charge		
41	Icebergs / Lifesavers	Energetics	
42	Maxwell-Boltzmann	Kinetics / Energetics	ICT
43		ROJECT (REFLECTION	N)
44	Study of Reaction Rates: Clock	Kinetics	
	Reaction: IO3- & HSO3-		

45	Factors that Affect the Rates of	Kinetics	
	Reaction: MnO4- & C2O4-2		
46	To determine Order of Reaction	Kinetics	
47	Determination of Energy of	Kinetics / Energetics	
	Combustion for Alcohols		
48	Determining the activation	Kinetics	
	energy of a reaction		
49	Enthalpy of Combustion of	Kinetics / Energetics	
	Foods		
50	Lab Activity: Equilibrium	Equilibrium	
	Constant: NO2+ N2O4		
51	Equilibrium Simulation	Equilibrium	
	(Aquaria +Cheerios)		
52	A Case Study of the Haber	Equilibrium	ICT
	Process		
53 Le Chateliers Principle		Equilibrium	
54	IA Lab I		
55	IA Lab II		

55 IA Lab II
56 Oxidation Numbers of MnO4- Redox
57 Electrochemical Cells Redox
58 Electrolysis of KI (aq) Redox
59 reactions of alkanes and alkenes Organic
60 Hydrolysis of Halogeno alkanes Organic

IB2 Labs begin at #35.