REVIEW of Grade 11 Chemistry

SCH4U_08 - 09

NAME: _____

Section A: Review of Rules for Significant Digits

All measurements have a certain degree of	associated with them.
All the accurately known digits and the one	e uncertain digit are called
or	
I he last figure shows where uncertainty be	gins. of 36.2 0 C and has an uncertainty of \pm 0.2 0 C all figures in that
36.2 are significant, including the 0.2, which	50.2° C, and has an uncertainty of $\pm 0.2^{\circ}$ C, an figures in that the succertain.
The notation 36.2 ± 0.2 °C indicates how u	ncertain it is.
1. All measured nonzero digits are	significant, e.g. 123, 12, 123.3
2. Zeros in between non-zero digits	s are significant figures, e.g. 102, 12.0, 102.3
3. Zeros appearing in front of all no placeholder, e.g. 0.123, 0.0123	onzero digits are not significant. They are acting as 6, 0.00123
4. Zeros at the end of a number and 1.10, 1.0	to the right of a decimal point are significant, e.g. 123.0,
5. Zeroes at the end of a number w	ithout a decimal point are ambiguous. Adding a decimal point
indicates their significance, e.g.	1230. 120. 20
6. When adding or subtracting nu	umbers, the final answer should have the same number of
decimal places as the measurem	ent having,
(i.e. the measurement with the le	ast precision).
7. When multiplying and dividing	numbers, the final answer should have the same number of
significant digits as the measure	ement having the , (i.e.
the measurement with the least a	ccuracy).
8. When there are a series of call	culations to do to obtain the final result,
Or, if you do round off, leave at lea	ast one extra digit until the end of all the calculations.)
Now answer the following questions:	
1. How many significant digits are there in	each of the following measurements?
a) 204.45 ha	b) 18.23 s
c) $380,000$ km	d) 0 00560 g
c) 500 000 km	u) 0.00000 g
2. Express the answer to each of the f	ollowing calculations with the correct number of
significant digits and using prope	er scientific notation. (1 mark each)
a) 13.89cm + 6.7732 cm	b) 120 km ³ / 8.56 km
c) 3.0899 mm ² x 22.4 mm	c) $3.3 \times 10^{-6} \text{ m} \times 1.05 \times 10^{2} \text{ m}$

Section B: Review of Nomenclature

	System			Example	
First	IUPAC		Classic		
Element	STOCK	None	Prefix	– OUS / – IC	
Metal: only 1 oxidation #		~			Na ⁺¹ , K ⁺¹ , Ca ⁺²
Metal: more than 1 oxidation # (but only max. 2 possible)	V		V	r	Cu ⁺¹ / Cu ⁺² , Pb ⁺² / Pb ⁺⁴ , (not: Mn, Cr, V, etc.)
Metal: more than 1 oxidation # (but more than 2 possible)	~		~		Mn ⁺² , Mn ⁺⁴ , Mn ⁺⁶ , Mn ⁺⁷
Non-metal	~		~		NO, N ₂ O, N ₂ O ₄

1. What System to use?

- 2. Binary Compound: use the suffix: "____". (Exceptions: hydroxide, OH⁻¹, and cyanide, CN⁻¹) e.g. CaO, ZnCl₂, Fe₂O₃, BN, Ba(OH)₂, KCN
- 3. Polyatomic ions: "— ate", "— ite" E.g. Na₂CO₃, FeSO₄
- 4. Hydrate: name the compound + use Greek numbering to indicate the molecules of water + hydrate. E.g. Na₂CO₃. 10 H₂O, FeSO₄. 6 H₂O
- 5. Binary acids: "hydro _____ --- ic acid". E.g. $HCl_{(aq)}$, $HF_{(aq)}$, $H_2S_{(aq)}$

— ate,

6. Polyatomic acids: $[H_n X O_n]$:

7. Ion form the polyatomic acid:

—ite,

Hypo____ite,

Per ate

Now answer the following questions:

1. a)	Name the following compounds. Mg_3N_2	b)AgCN
c)	Ca(NO ₃) ₂	d)H ₂ SO _{4 (aq)}
e)	HCl _(aq)	f) CuSO ₄ .5H ₂ O
2. a) c)	Give the formula for each compound. cupric nitrate dihydrate magnesium carbide	b) dintrogen trisulphided) ammonium phosphate
e)	chromium (III) bromide	f) plumbous acetate

Section C: Review of Balancing Equations and Types of Reactions

Balance the following equations. Identify the **type of reaction** occurring, (i.e. synthesis, decomposition, single displacement, double displacement).

1. $Al_{(s)} + $	NiCl _{2 (aq)}	\longrightarrow	AlCl _{3 (aq)}	+	Ni (s)
2Mg(OH) _{2 (aq)}	+	\longrightarrow	$_Mg(NO_3)_2$ (aq)	+	$_{\rm H_2O}$ (l)
3C ₃ H ₈	+ — O ₂	\longrightarrow	— CO ₂	+	$-H_2O$

- 4. Write a balanced equation for the complete combustion of octane, $C_8H_{18(g)}$ in the presence of excess oxygen gas, include the state symbols.
- 5. When an aqueous solution of copper (II) sulphate is added to an aqueous solution of sodium hydroxide, a blue-green precipitate is obtained.
- 6. When an aqueous solution of calcium chloride is added to an aqueous solution of potassium phosphate, a white precipitate is obtained.
- 7. A solution of lead (II) nitrate is mixed with a solution of sodium chromate. A precipitate forms in the presence of a soluble solution.

Section D: Review of Solubility Rules and Net- Ionic Equations

Solubility Rules:

Steps for writing net-ionic equation:

Now for questions 5, 6 and 7 from Section C above, write the:

(a) name and the formula for the possible precipitate,

(b) balanced chemical equation for the reaction described, include state symbols.

- (c) balanced total dissociated ionic equation,
- (d) balanced net-ionic equation.

Section E: Review of Chemical Calculations

The mole is the unit in which amounts of substance are measured in chemistry.

The mole is defined as that amount of substance that contains the same number of particles as there are atoms in exactly 12 g of the isotope carbon 12.

The number of particles in a mole is found to be 6.02 * 10^{23} this number is called the Avogadro constant and has the symbol N_A

	n	number of moles
	m	mass (g)
	m	Molar mass (g mol ⁻¹)
	Ν	number of entities
	N _A	Avogadro's number
	С	molar concentration (mol L ⁻¹ , mol dm ⁻³)
	V	volume (L, dm ³)
	V _M	molar volume of gas (22.4 L at STP)

The relationships between amount of substance, number of particles, mass of solid, and volume of gas are very important:

amount number of particles mass of solid volume of gas 1 mole = $6.02 * 10^{23}$ = A_R or M_R in grams = 22.4 dm³ at STP

Many calculations involve converting from one part of this relationship to another; always go back to this key line at the start of your calculation.

When performing chemical calculations remember the following:

(i) To define the particles you are talking about.

E.g. Is your mole of oxygen $6.02 * 10^{23}$ oxygen **atoms** which weigh 16 g or $6.02 * 10^{23}$ oxygen **molecules** which weigh 32 g?

(ii) Substances are often not pure, but are diluted in solutions.

The quantity of substance in a solution is called its concentration, expressed in several different ways: grams per liter shortened to g/L or $g L^{-1}$

grams per cubic decimeter short to g/dm³ or g dm⁻³

moles per liter shortened to mol/L or mol L⁻¹

moles per cubic decimeter shortened to mol/dm⁻³ or mol dm⁻³

(iii) Volumes are measured in several different units: $1 \text{ dm}^3 = 1 \text{ liter} = 1000 \text{ cm}^3 = 1000 \text{ mL}$

Steps for Calculating Empirical and Correct Molecular Formula

Steps to Stoichiometry:

avit

Now answer the following questions:

- 1. i) How many moles in 5.00×10^2 g of iron?
 - ii) How many iron atoms in 5.00×10^2 g of iron?
 - iii) How many moles are there in 185 g of calcium hydroxide ?
 - iv) How many molecules are there in 196 g sulphuric acid?
 - v) How many oxygen atoms, sulphur atoms, hydrogen atoms and sulphate ions, hydrogen ions are contained in 196 g sulphuric acid ?
- 2. Calculate the mass of:
 i) 1.50 moles of oxygen gas, O₂

ii) 750 cm³ of 0.0150 mol dm⁻³ NaOH

- iii) 7.00 mol potassium fluoride, KF
- iv) 3.01 x 10^{22} molecules of nitric acid, HNO_{3 (aq)}

v) 5.62 L of carbon dioxide gas at 65.5 °C and 126 kPa.

- 3. The molar mass of a compound with the empirical (simplest) formula CH_2O was found to be 240 g mol⁻¹. What is the molecular formula of the compound ?
- 4. The percentage composition of tartaric acid is: 32.01 % C, 4.03% H, and 63.96 % O. Given that the molecular mass of tartaric acid is 150 amu, determine its **molecular formula**.

5. Using the equation below, how many grams of ammonia will be formed if 75.0 g of nitrogen reacts with excess hydrogen? $N_{2 (g)} + H_{2 (g)} \longrightarrow NH_3$ (BALANCE)

6. A mixture of 5.00 g of $H_{2 (g)}$ and 10.0 g of $O_{2 (g)}$ is ignited. Water forms according to the following $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$ equation:

a) Which reactant is limiting?

b) How much water will be produced by the reaction?

Calcium carbonate 'fur' on the inside of a kettle used in a hard water area of the country can be removed using a dilute solution of hydrochloric acid. What volume of 0.010 mol l⁻¹ hydrochloric acid would be needed to remove 2.00 g of calcium carbonate from the kettle? The equation for the reaction is:

 $CaCO_{3(s)} + 2 HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + CO_{2(g)} + H_2O_{(1)}$ One of the reactions involved in the smelting of copper sulphide ores involves copper (I) oxide and copper (I) sulphide involves the following equation: $2 \operatorname{Cu}_2 O_{(s)} + \operatorname{Cu}_2 S_{(s)} \longrightarrow 6 \operatorname{Cu}_{(s)} + \operatorname{SO}_{2(g)}$ If 50.0 g of Cu_2O is heated with 25.8 g of Cu_2S , then:

a) determine which reagent, if any, is in excess. b) calculate the theoretical yield of copper.

c) determine the percent yield if 58.0 g of copper is actually obtained.

Section F: Review of Atomic and Ionic Structure

1. Write the complete, and short-hand electronic configuration (in terms of s, p, d) for: (ii) $_{26}$ Fe (i) $_{15}P$

2. Hydrogen has three isotopes: 1 H, 1 H, 1 H. Give the number of protons, neutrons and electrons found in each isotope.

3.	Which of the follow	ng elements will have the largest atomic radius?	
a)	Cs, K, or Li	b) F, B or Li	
c)	K ⁺¹ , Mg ⁺¹ , Al ⁺³	d) O, O ⁻¹ , O ⁻²	

4. Which of the following will have the smallest first ionization potential energy? a) Li, B, F b) Si, S, Sb

The difference in electronegativity, ΔEn , can be used to describe the chemical bond as:

- i) ionic, $\Delta En > 1.7$
- ii) polar covalent, $\Delta En : 0.5 1.7$
- Iii) non-polar covalent, $\Delta En < 0.5$

In a polar molecule the bond dipoles do NOT cancel, e.g. H₂O

5. Given the following combinations of elements and their electronegativities, state **what kind of bond** (ionic, polar covalent, or covalent) is formed.

a)	potassium (0.9) and chlorine (2.9)	
b)	hydrogen (2.1) and oxygen (3.5)	
c)	two sulphur atoms (2.4)	
d)	phosphorus (2.1) and chlorine (3.0)	

6. Explain the difference between electron affinity and electronegativity, give an example in each case.

7. Draw the Lewis structure for each of the following molecules and state the **shape** and indicate if the molecule is **polar or non-polar**.

c. Give two reasons why noble gases are not assigned electronegativity values.