IB Chemistry: Energetics Practice Question [~30 marks]

Ethene Gas + Water => Ethanol Liquid

$$C_2H_{4(g)} + H_2O_{(l)} => C_2H_5OH_{(l)}$$

1. Write a balanced equation [1 mark]

$$C_2H_{4(g)} + H_2O_{(l)} => C_2H_5OH_{(l)}$$

- 2. Explain the structure and bonding of ethane and ethanol [4 marks]
- Draw the Lewis Diagrams for both Ethene and Ethanol
- List number of each type of bond (ie. 1 C=C and 4 C-H for Ethene)
- Describe bonds in terms of Sigma and Pi bonds
- State the bonding of each charge center (ie. sp² trigonal planar 120° for Ethene)
- State the types of IMFA's (ie. non-polar, LDF for Ethene)
 - 3. Explain what is meant by enthalpy of formation [2 marks]

Definition: Energy released when 1 mol of ethanol is formed from 1 mol of Ethene Gas and 1 mol of Water Liquid.

4. Write a balanced thermochemical equation for Ethanol given that $\Delta H_f = -277.7 \text{ kJ/mol}$ [2 marks]

$$2 C_{(s)} + 3 H_{2(a)} + \frac{1}{2} O_{2(a)} = C_2 H_5 OH_{(l)} + 277.7 kJ$$

- 5. Calculate the enthalpy of the reaction using the data table. [2 marks]
- Use the equation: $\Delta H_{rxn} = \Delta H_{products} \Delta H_{reactants}$
 - 6. Outline what you understand based on your answer from 5. [2 marks]
- Exothermic reaction
- Products more stable than reactants
 - 7. Predict the spontaneity of the reaction [2 marks]
- Not spontaneous, entropy is decreasing since you go from (Solid + Gas) => Liquid
- Entropy of a gas is much greater than the entropy of a liquid
 - 8. Compare and contrast between H_f° of $H_{2(g)}$ and the entropy of $H_{2(g)}$ [2 marks]
- H_f° is 0 since Hydrogen gas is an element (by convention it must be 0)
- ΔS of H_2 is not 0 (entropy is energy distributed in a system) therefore the entropy must have a numerical value.

- 9. Explain what you understand about ΔS of the reaction [3 marks]
- ∆S°
 - o △ means change
 - o S means randomness & disorder of the system
 - o o means under standard conditions
 - 10. Calculate the ΔS of the given reaction and explain what you understand based on the answer. [3 marks]
- △S is negative
- Use the equation $\Delta S_{reactants} = \Delta S_{products} \Delta S_{reactants}$
- Since entropy change is negative the products are more ordered than the reactants
- This reaction is not spontaneous since entropy must always increase in a spontaneous reaction
 - 11. Would this reaction be spontaneous at room temperature? Justify. [4 marks]
- Use the equation $\triangle G = \triangle H T \triangle S$
- Not spontaneous at room temperature
- Reaction may occur at low temperatures since:
 - o $\triangle G < 0$ for spontaneity
 - o ΔS is negative (based on answers above)
 - ο ΔH is negative (based on answers above)
 - o Therefore for ΔG to be negative, T must be very low
 - o Therefore the reaction is only spontaneous at low temperatures (most likely not room temp)
 - 12. Calculate the temperature which this reaction is spontaneous. [3 marks]
- Use the equation $\triangle G = \triangle H T \triangle S$
- Set ∆G = 0
- $\triangle H$ and $\triangle S$ already known from previous questions
- Solve for T
- Be careful to convert units to kJ