A Case Study of the Haber Process

Consider the Haber Process for the manufacture of ammonia, $NH_{3 (g)}$:

$$N_{2(g)}$$
 + $3 H_{2(g)}$ \sim $2 NH_{3(g)}$

Answer the following questions:

- What are the three raw materials in the Haber Process?
- 2. Give four uses of ammonia.

1.

Table 1

3. Look at the information in Table 1. What would be the effect on the yield of ammonia on decreasing the temperature?

Pressure (atm)	NH_3 present at equilibrium (%)					
	100 °C	200 °C	300 °C	400 °C	500 °С	700 °C
10	-	50.7	14.7	3.9	1.2	0.2
25	91.7	63.6	27.4	8.7	2.9	-
50	94.5	74.0	39.5	15.3	5.6	1.1
100	96.7	81.7	52.5	25.2	10.6	2.2
200	98.4	89.0	66.7	38.8	18.3	-
400	99.4	94.6	79.7	55.4	31.9	-
1000	-	98.3	92.6	79.8	57.5	12.9

- 4. Draw a graph of the data shown in table 1 with *percentage conversion to* NH_3 on the y-axis and *pressure in atmospheres* on the x-axis. Draw separate lines on the same graph for the six different temperatures.
- 5. Suggest why the process is not operated at even lower temperatures.
- 6. What is the ratio of nitrogen to hydrogen, by volume, of the gases entering the catalyst chamber?
- 7. What practical reasons can you think of for not using very high pressure?
- 8. The boiling points N_2 , H_2 and NH_3 are -196 ^{O}C , -253 ^{O}C and -33 ^{O}C respectively. How do you think the ammonia could be separated from unreacted nitrogen and hydrogen?
- 9. The boiling points of these gases are higher at higher pressure. Use your knowledge of particles to explain this.

- 10. Some of the ammonia is distributed as liquid ammonia by road using tankers. Suggest an advantage of distributing ammonia as liquid rather than gas.
- 11. What happens to the unreacted nitrogen gas and hydrogen gas after the ammonia is removed?
- 12. If the condition are 200 atmospheres and 425 °C what yield of ammonia is obtained at equilibrium?
- 13. In practice the yield obtained under these condition is 15%. Can you explain why this value is lower than your answer to question 12.
- 14. What would be the effect on the yield on ammonia of increasing the pressure?
- 15. Suggest why the process is not operated at even higher pressures.
- 16. The forward reaction in the Haber Process is exothermic (? $H^{\circ} = -92 \text{ kJ mol}^{-1}$). Explain how the experimental results in Table 1 are in agreement with Le Chatelier's Principle.
- 17. Pick out the conditions of temperature and pressure from those listed in Table 1 that would give:
- a. the highest yield on ammonia

- b. the fastest rate of conversion to ammonia
- 18. Find out the conditions normally used in the Haber Process. Explain in detail why each of the condition is chosen.

COM