Equilibrium Calculations Practice I

1. Suppose that 2.00 mol of HI in a 1.00 L flask at 425 °C react to produce H₂ and I₂. When equilibrium is reached the concentration of H_2 and I_2 are determined each to be 0.214 mol/L. What is the equilibrium constant? For the reaction: $N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)}$ If the initial $[N_2] = 0.32$ M, and the initial $[H_2] = 0.60$ M. At equilibrium $[H_2] = 0.30$ M What is 2. K.? For the reaction: $H_{2(g)} + I_{2(g)} \approx 2 HI_{(g)}$ $K_c = 55.6$. If the initial $[H_2] = 0.200$ M, and the initial $[I_2] = 0.200$ M, what is the equilibrium [HI]? For the reaction: $H_{2 (g)} + CO_{2 (g)} \longrightarrow H_2O_{(g)} + CO_{(g)}$ $K_c = 0.771$. If 0.0100 mol each of CO₂ and $H_{2 (g)}$ are mixed in a 1.0 L container, what are the concentration of all the substances at equilibrium? $K_c = 64$ for the reaction: $N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$ At a certain temperature. Suppose it was found that an equilibrium mixture of these gases contained 0.360 M NH₃ and 0.0192 M N₂. What was the concentration of H₂ in the mixture? At a certain temperature $K_c = 0.18$ for the equilibrium: $PCI_{3(g)} +$ $Cl_{2(g)} \longrightarrow PCI_{5(g)}$ Suppose the reaction vessel at this temperature contained these gases at the following concentrations: $[PCI_3] = 0.0420 \text{ M}$ $[Cl_2] = 0.0240 \text{ M},$ $[PCl_5] = 0.00500 \text{ M}$ Is the system at equilibrium? If not, which direction will the equilibrium have to proceed in order to attain b) equilibrium? $CH_{4(g)} + H_2O_{(g)} \equiv$ For the following reaction: \longrightarrow CO_(g) + 3 H_{2(g)} At 1500 °C, the equilibrium mixture of these gases is: $[CO] = 0.300 \text{ mol dm}^{-3} [H_2] = 0.800 \text{ mol dm}^{-3} [CH_4] = 0.400 \text{ mol dm}^{-3}$ At 1500 °C, $K_c = 5.67$, what is the equilibrium concentration of $H_2O_{(g)}$? $CO_{(g)} + H_2O_{(g)} \longrightarrow CO_{2(g)} + H_{2(g)}$ For the reaction: $K_c = 4.06$ at 500 °C, and the initial concentration of both $CO_{(g)}$, and of $H_2O_{(g)}$ is **10**.100 mol dm⁻³. Determine the equilibrium concentration of all the reactants and products at this temperature. In an equilibrium mixture of the reaction: $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$ at 250 °C in a 2.0 dm³ vessel, there is 0.15 mol of PCl₃ and 0.090 mol of Cl₂. $K_c = 0.19 \text{ mol dm}^{-3} \text{ at } 250 \text{ }^{\circ}\text{C}.$ a) Calculate the amount of PCl_5 present at equilibrium. b) Calculate the mass of PCl₅ present at equilibrium.

Equilibrium Calculations II

1. $SO_{2 (g)}$ + $NO_{2 (g)}$ $SO_{3 (g)}$ + $NO_{(g)}$ At equilibrium $[SO_2] = 4.1 \text{ M}, [NO] = 0.5 \text{ M}, [SO_3] = 3.0, [NO_2] = 0.5 \text{ M}$ Calculate K. a) b) In another experiment, 8.00 mol of SO₂ and 4.00 mol of NO₂ are placed in a 2.00 L flask and are allowed to reach equilibrium, and the concentration of SO₃ at equilibrium is 0.4 mol. Calculate K. \leftarrow $C_{(g)}$ + $D_{(g)}$ $A_{(g)}$ + $B_{(g)}$ a) 0.80 mol of A and 0.80 mol of B are placed in a 1.0 L flask and react until equilibrium is b) reached. Analysis reveals that 0.60 mol of both C and D are present. Calculate the equilibrium concentrations of A, B, C, and D, and then calculate K. In another experiment, the initial concentrations of A and B are 2.0 M and 2.0 M respectively. Calculate the equilibrium concentrations of A, B, C and D. $A_{(g)} + B_{(g)} \longrightarrow C_{(g)} + D_{(g)} K = 4.0$ If the initial concentrations of A and B are 0.4 M and 0.4 M respectively. Calculate the K = 4.0equilibrium concentration of all relevant compounds. At the temperature of 660 K, the reaction: + $NO_{2(g)} = SO_{3(g)} + NO_{(g)} K = 85.0$ $[SO_2] = 0.0025 \text{ M}, [NO_2] = 0.0035 \text{ M}, [NO] = 0.025 \text{ M}, [SO_3] = 0.0400 \text{ M}$ a) Is the system at equilibrium? b) If not which direction will the reaction have to go to attain equilibrium? Calculate the equilibrium concentration of NH₃ for the reaction: $N_{2 (g)} + 3 H_{2 (g)} \longrightarrow 2 NH_{3 (g)}$ The equilibrium concentrations for the reactants are $[N_2] = 0.45$ M and $[H_2] = 1.10$ M, K is 1.7 x 10⁻². At 373 K, the following reaction has an equilibrium constant, $K = 2.2 \times 10^{-10}$ \implies CO_(g) $\text{COCl}_{2(s)}$ ___ + $Cl_{2(g)}$ If 1.00 mol of phosgene, COCl₂, is placed in a 10.0 L flask, calculate the concentration of carbon monoxide, CO, at equilibrium. At 1000 °C, for the reaction: $2 H_2O_{(g)} \longrightarrow 2 H_{2(g)} + O_{2(g)}$ K_c = 7.32 x 10⁻¹⁸ mol dm⁻³, what will be the [H_{2(g)}] at equilibrium if 1.00 mol of H₂O_(g) are 7. placed in a 10.0 L vessel? For the equilibrium: For the equilibrium: $2 \text{ HBr}_{(g)} \longrightarrow \text{Br}_{2(g)} + \text{H}_{2(g)}$ $\mathbf{K}_{c} = 0.190 \text{ mol dm}^{-3} \text{ at } 250 \text{ }^{\text{O}}\text{C}.$ 2.085g of $\text{HBr}_{(g)}$ was heated to 250 $\text{}^{\text{O}}\text{C}$ in a sealed container of 8 500 cm³ capacity and maintained at this temperature until equilibrium was established. Calculate the concentration of the reactants and the products. 9. In an experiment for the following equilibrium system at 25 $^{\circ}$ C : $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \iff CH_3COOC_2H_{5(1)} + H_2O_{(1)}; K_c = 4.00$ The equilibrium concentrations are determined to be: $[CH_{3}COOH] = 0.330 \text{ mol},$ $[CH_3COOC_2H_5] = 0.660 \text{ mol}, [H_2O] = 0.660 \text{ mol}$ What amount of C_2H_5OH is present at 25 °C?