Solubility Equilibrium and Solubility Product Problems

SCH4U 2004 - 2005

Calculating K_{sn} from solubility data

- 1. The solubility of silver bromide is found to be 8.8×10^{-7} mol/L at 25° C. Calculate the K_{sp} for silver bromide.
- 2. The solubility of iron (II) hydroxide is 1.4×10^{-3} g/L at 298 K. What is K_{sp} ?
- 3. The solubility of copper (II) bromide is $2.0 \times 10^{-4} \text{ mol/L}$ at 25°C . Calculate the K_{sp} at 25°C .
- 4. The solubility of strontium sulphate is $5.83 \times 10^{-4} \text{ mol/L}$ at 25°C . Calculate the K_{sp} at 25°C .
- 5. The solubility of magnesium hydroxide is 1.5×10^{-4} mol in 100 mL at 18°C. Calculate K_{sp} .
- 6. The solubility of silver sulphide is 1.3×10^{-3} mol in 50 mL, at 20°C, what is K_{sp} ?
- 7. The solubility of barium fluoride is 2.2×10^{-2} mol/L at 25° C. Calculate the K_{sp} at 25° C.
- 8. The solubility of lithium carbonate at 15°C is 1.5 g/100 mL of water. Calculate the K_{sp} of lithium carbonate at 15°C.

Calculating solubility from K_{sp}

Calculate the solubility of calcium carbonate in water at 25°C. The K_{sp} of calcium carbonate is 4.8 x 10^{-5} .

- 2. What is the solubility of calcium hydroxide, in g/L if the solubility product constant for calcium hydroxide is 4.0×10^{-6} ?
- 3. The K_{sp} for magnesium fluoride is 6.4 x 10⁻⁹. What is the solubility in g/L?

The solubility product of copper (II) sulphide, CuS, is 4 x 10⁻³⁸ at 25°C. Calculate:

- (a) the number of moles of CuS that will dissolve in 1.0 L of solution
- (b) the number of grams of CuS that will dissolve in 1.0 L of solution
- (c) the concentration of the sulphide-ion present
- 5. What is (a) the solubility of calcium hydroxide, $Ca(OH)_2$, in g/L (b) and the $[OH^{-1}]$, if the solubility product constant for $Ca(OH)_2$ is 4×10^{-6} ?
- 6. The solubility product constant, K_{sp} , of $Ag_2CrO_{4(s)}$ in water is 5.00 x 10^{-13} at 25 $^{\circ}C$, what is the concentration of Ag^{+1} in a saturated solution of Ag_2CrO_4 at 25 $^{\circ}C$.
 - The K_{sp} of Ag_2CO_3 at 25 $^{\circ}C$ is 8.20 x 10^{-12} . Calculate the mass of silver that may be recovered from a saturated solution of $Ag_2CO_{3(aq)}$ at 25 $^{\circ}C$.

Will a Precipitate Form? (WAPF)

- 1. Will a precipitate form if 20.0 mL of 0.010 M CaCl₂ are mixed with 20.0 mL of 0.080 M Na₂SO₄(K_{sp} of CaSO₄ = 2.45 x 10⁻⁵)
- 2. Will a precipitate form if 40.0 mL of 8.0 x 10^{-3} M Mg(NO₃)₂ are mixed with 60.0 mL of 1.0 x 10^{-2} M K₂CO₃ (K_{sp} of MgCO₃ = 2.6 x 10^{-5})
- Will a precipitate form if 25 mL of 4 x 10^{-3} M AgNO₃ are mixed with 75 mL of 2.0 x 10^{-4} M Na₂CrO₄ (K_{sp} of AgCrO₄ = 9.0×10^{-12})
 - 4. A student dissolves 0.166 g of lead nitrate, $Pb(NO_3)_2$, in 1.0 L of 0.01 M solution of sodium sulphate, Na_2SO_4 . Will a precipitate form? Identify the precipitate, given K_{sp} $PbSO_4 = 6.3 \times 10^{-7}$.
- 5. 25.0 mL of a 1 x 10^{-4} M solution of sodium chloride are mixed with 25.0 mL of a 2 x 10^{-14} M silver nitrate solution. Will a precipitate form if K_{sp} AgCl = 1.8 x 10^{-10} ?
- 6. 25.0 mL of a 4.0 x 10^{-6} mol/L solution of NaBr are mixed with 75.0 mL of a 1.0 x 10^{-2} mol/L AgNO₃ solution. Will a precipitate form if $K_{sp} = AgBr = 5.0 \times 10^{-13}$?
 - 7. A student mixes 70.0 mL of a 4.0 x 10^{-6} mol/L NaBr solution with 30.0 mL of 1.0 x 10^{-10} mol/L of CuNO₃. Will a precipitate form, given K_{sp} CuBr = 5.9×10^{-9} ?

Common Ion Effect

- 1. Calculate the solubility of silver chloride in 0.10 M NaCl, K_{sp} AgCl = 2.0 x 10⁻¹⁰.
- 2. Calculate the solubility of strontium sulphate in a 0.2 M solution of sodium sulphate, K_{sp} SrSO₄ = 7.2 x 10⁻⁹ at 25°C.
- 3. Calculate the solubility of solid CaF_2 (K_{sp} $CaF = 4.0 \times 10^{-11}$ in a 0.025 M NaF solution).
- 4. A solution contains $1.0 \times 10^{-5} \text{ M Na}_3\text{PO}_4$. What is the minimum concentration of AgNO₃ that would cause precipitation of solid Ag₃PO₄, K_{sp} Ag₃PO₄ = 1.8×10^{-18} .

Solubility Equilibria

1. Which of the following salts will produce the greatest concentration of ions in aqueous solutions?

- 2. A solution is $1 \times 10^{-14} \, \text{M}$ in NaF, Na₂S and Na₃PO₄. What would be the order of precipitation as a source of Pb⁺² is added gradually to a solution? The relevant K_{sp} values are K_{sp} PbF₂ = 4×10^{-8} , K_{sp} PbS = 7×10^{-29} and K_{sp} Pb₃(PO₄)₂ = 1×10^{-54} .
 - 3. A solution is known to contain Hg_2^{+2} , Zn^{+2} and Ca^{+2} ions. If a student wants to separate these three ions by precipitating them one by one from solution, in what order must the three following be added?
 - a) H₂SO₄, HCl and H₂S

b) H₂SO₄, H₂S and HCl

c) H₂S, H₂SO₄ and HCl

d) H₂S, HCl and H₂SO₄