Assignment: Free Energy and Equilibrium Constant $$\Delta G^0 = -RT \ln K$$ The above equation allows us to find the equilibrium constant of a reaction if we know the change in standard free energy and vice versa. The following table summarizes the three possible relations between ΔG^0 and K, as predicted by the above equation ... | K | ln K | $\Delta \mathbf{G}^0$ | Comments | |-----|----------|-----------------------|--| | > 1 | positive | negative | Products are favoured over reactants at equilibrium | | < 1 | negative | Positive | Reactants are favoured over products at equilibrium | | = 1 | 0 | 0 | Products and reactants are equally favoured at equilibrium | Note: when solving the above equation that the unit of ΔG^0 is J or kJ and those of RT lnK are J/mol, and R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$. For reactions having very large or very small equilibrium constants, it is generally very difficult to measure the K values by monitoring the concentrations of all the reacting species. For this reason it is easier to measure the equilibrium constant from ΔG^0 . Since, $\Delta G^0 = \Delta H^0 - T \Delta S^0$, combining this with the above equation, gives us, $$\ln K = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$ ΔH^0 and ΔS^0 vary very little with temperature and can be treated as constants over a limited temperature range. A plot of ln K against 1/T should therefore be a straight line where the slope = $-\Delta H^0/R$, and the intercept = $\Delta S^0/R$. We can therefore use a series of measurements of equilibrium constants at different temperatures in two important ways ... - 1. We can calculate a value for ΔH^0 . This method is often applied when calorimetry cannot be used. - 2. We can obtain values of K for temperatures other than those at which measurements were taken. It is not always necessary to plot a graph of ln K against 1/T in order to estimate K at some other temperature. We can derive an expression which enables you to calculate K directly. Let K_1 = equilibrium constant at temperature T_1 and K_2 = equilibrium constant at temperature T_2 . Then ... $$\text{ln } \underbrace{\frac{K_2}{K_1}} \quad = \quad \text{-} \quad \underbrace{\frac{\Delta H^\circ}{R}} \quad \underbrace{\frac{(1}{T_2} - \quad \underline{1})}_{1}$$ Thus, if four of the quantities ΔH° , K_1 , K_2 , T_1 and T_2 are known, the fifth may be calculated. ## **Problems** 1. Calculate the equilibrium constant for the following reaction at 25 °C: $$2 H_{2 (g)} + O_{2(g)}$$ $$+ O_{2(g)}$$ $$\Delta G^{0}_{rxn} = 474.4 \text{ kJ}$$ Comment upon the value determined. $$R = 8.314 \text{ J/K.mol}$$ (Ans: $K_p = 7 \times 10^{-84}$, consistent with the fact that water does not decompose into hydrogen and oxygen gases at 25 °C) 2. Calculate the equilibrium constant, K_p , for the reaction : $$2 O_{3(g)} =$$ $$^{r}3 O_{2(g)}$$ 3. Calculate ΔG^0_{rxn} at 25 ^{0}C for the following reaction, and comment upon the solubility of $AgCl_{(s)}$: $$\rightarrow$$ \rightarrow $$K = 1.60 \times 10^{-1}$$ AgCl_(s) AgCl_(aq) $Ag^{+1}_{(aq)} + Cl^{-1}_{(aq)}$ $K = 1.60 \times 10^{-10}$ (Ans: $\Delta G^0 = 56$ kJ, indicating that AgCl is slightly soluble and that the equilibrium lies mostly to the left.) 4. At 1065 0 C, $K_{p} = 0.0118$ atm for the reaction: $H_{2}S_{(g)} = 2 H_{2 (g)} + S_{2(g)} = \Delta H^{\circ} = 177.3 \text{ kJmol}^{-1}$ $$H_2S_{(g)}$$ $$H_2S_{(g)}$$ $$2 H_{2 (g)} + S_{2(g)}$$ $$\Delta H^{\circ} = 177.3 \text{ kJmol}^{-1}$$ Calculate the equilibrium constant for the reaction at 1200 °C. (Ans: $$K_2 = 0.0510$$ atm) (5.) A particular reaction has a value of $K_p = 2.44$ atm at 1000 K and 3.74 atm at 1200 K. Calculate ΔH° for this reaction. (Ans: $\Delta H^{\circ} = 21.3 \text{ kJmol}^{-1}$) 6. The data below was collected for the reaction: | N | (|) | | |----|--------|----|-----| | ΙN | \sim | ノィ | (~) | | T (K) | 1/T (K ⁻¹⁾ | Kp (atm) | ln Kp | |-------|-------------------------|------------------------|-------| | 350 | 2.86 x 10 ⁻³ | 3.89 | | | 400 | 2.50 x 10 ⁻³ | 4.79 x 10 ¹ | | | 450 | 2.22 x 10 ⁻³ | 3.47×10^2 | | | 500 | 2.00 x 10 ⁻³ | 1.70×10^3 | | - a) Determine ln Kp - b) Plot a graph of ln Kp (y-axis) against 1/T (x axis) - c) Measure the slope of the graph and so calculate ΔH° for this reaction. (Ans: 58.3 kJ mol⁻¹) - d) What is the value of Kp at (i) 375 K, (ii) 475 K, (iii) 550 K What assumption must you make to determine Kp at 550 K? - e) Use the graph to determine the effect of an increase in temperature on the position of equilibrium for this reaction.