

SCH 4UE | Chemistry Prashanth Srinivasan

CONTENTS

.

F.1 § FOOD GROUPS	3
F.1.1 & Foods and Nutrients	
f.1.2 & Lipids, Carbs, and Proteins	
F.2 § FATS AND OILS	3
F.2.1 & Saturated and Unsaturated	3
F.2.3 & Structure and Stability	
F.2.4 & Hydrogenation	
F.3 § SHELF LIFE	4
F.3.1 & Factors Affecting Shelf Life	
F.3.2 § Extending Shelf Life	
F.3.3 & Fat Rancidity	
F.3.4 § Free-Radical Chain Reaction	5
F.3.7 & Antioxidants	5
F.4 § COLOUR	5
F.4.1 & Dyes and Pigments	5
F.4.2 & Anthocyanins	5
F.4.3 & Carotenoids	6
F.4.4 & Chlorophylls	6
F.4.5 & Hemes	6
F.4.6 & Pigment Structure and Colour	6
F.4.7 & Safety Issues with Synthetic Colourants	6
F.4.8 & Non-Enzymatic Browning and Caramelization	7
F.5 & GENETICALLY MODIFIED FOODS	7
F.5.1 & Pros and Cons	7
F.6 § TEXTURE	7
F.6.1 & Dispersed Systems	7
F.6.2 § Emulsifiers	
F.9 § STEREOCHEMISTRY IN FOOD	8
F.9.1 & Enantiomer Nomenclature	
F.9.2 § Food Enantiomers	

ſ

F.1 § FOOD GROUPS

F.1.1 & FOODS AND NUTRIENTS

- **Food:** any natural/artificial material intended for human consumption, composed of chemicals which provide fuel/energy for bodily functions and building blocks for growth/regeneration
- Nutrient: component of food used by body to provide energy, growth/repair of tissues
- Lipids
- Carbohydrates

- Proteins o Vitamins
- Malnourishment: lack of nutrient quantities in diet OR lack of balance in nutrient proportions in diet

F.1.2 \$ LIPIDS, CARBS, AND PROTEINS

- Lipids: fats + oils \rightarrow esters composed of glycerol (propan-1,2,3-triol) + fatty acid (carboxyl) chains (1, 2, or 3) \rightarrow source of energy + cell membranes
 - **Saturated fatty acid** have only sp³ C hybridization (no double bonds) \rightarrow pack together \rightarrow solid (fats)
 - (poly)unsaturated have 1 or more sp²-hybrid C (1 or more double bonds) \rightarrow prevents packing \rightarrow liquid (oils)
 - **Carbohydrates**: CH₂O \rightarrow sugars and polymers, e.g. starches, cellulose \rightarrow energy source, structural material, energy storage
 - **Monosaccharide**: $(CH_2O)_n n > 2 \rightarrow simple sugars w/ 1 carbonyl (C=O) and at least 2 hydroxyl (OH)$
 - **Disaccharide**: formed via condensation of 2 monosaccharides, e.g glucose + glucose \rightarrow maltose, g + fructose \rightarrow sucrose
 - **Proteins:** polymers of amino acids \rightarrow C, H, O, N, many have P, S
 - Structural material • Storage/transport
- Hormones (signals)
- Immunity/antibodies
- Energy/locomotion
- Enzymes/catalysts

F.2 § FATS AND OILS

F.2.1 § SATURATED AND UNSATURATED

- Fat triglyceride in solid form at room temp., usually from animal source; almost completely saturated (lard, butter)
- **Oil:** triglyceride in liquid form at room temp., usually from plant sources; usually **unsaturated** (olive oil, corn oil, cod oil)
- Usually **mixture** of chain lengths / degrees of saturation \rightarrow proportions determine lipid properties, e.g. **crystallinity**:
- Mean hydrocarbon chain **length** \rightarrow longer = more VDW = higher MP
- Degree of **unsaturation** \rightarrow causes "kinks", separating molecules \rightarrow lower VDW strength = lower MP 0
- **Cis or trans** about double bonds \rightarrow **cis** creates much more of a "bend" than trans (see above pt.) = lower MP

F.2.3 § STRUCTURE AND STABILITY

- **Saturated** have sp³ \rightarrow very stable configuration compared to pi-bonds in sp² \rightarrow **unsaturated** more reactive/keep less well
- Main problem \rightarrow auto-oxidation: reaction of C=C with O₂, esp. in presence of light (photo-oxidation) \rightarrow causes discoloration (i.e. of margarine)
- o Unsaturated also prone to hydrogenation, hydrolysis, and enzymatic degradation by microbes

F.2.4 \U0064 **HYDROGENATION**

Unsaturated oils can be hydrogenated w/ H₂ @ high P + T (200°C) \rightarrow need catalysts for industrial feasibility (e.g. Ni) • Can produce lipids that are more saturated or even completely saturated

Advantages:

- Product is semi-solid or solid instead of liquid \rightarrow easier for some cooking techniques
- Product is more stable \rightarrow oxidation rate decreased by sp³ \rightarrow takes longer to spoil
- Texture can be controlled, i.e. hardness + plasticity

Disadvantages:

- Mono/polyunsaturated are **healthier**, esp. for heart \rightarrow do **not** cause **atherosclerosis** (clogging)
 - Partial/incomplete hydrogenation causes trans-fats (not naturally occurring) \rightarrow cannot be metabolised well by body
 - Accumulate in fatty tissues and blood vessels \rightarrow heart diseases, obesity, stroke, etc.
 - Cause increase in LDL (low-density lipoprotein) cholesterol (mainly fat) \rightarrow atherosclerosis \rightarrow heart disease

3

o Minerals

o Water

F.3.1 § FACTORS AFFECTING SHELF LIFE

- <u>Shelf life</u>: length of time a product can be stored without gradual degradation of flavour, smell, texture, appearance, or microorganism growth, to the point of being **unfit** for safe consumption. Based on:
- 1. **Change in H₂O content from air contact**: dehydration of moist foods causes undesirable texture; air exposure causes increased **rate of oxidation** and decrease in nutrient value, discoloration, rancidity
- O Dry foods that absorb H₂O become more prone to microbial degradation
- 2. Chemical reaction: can produce pH changes (souring) or other undesirable flavours, colour changes, nutritional decrease
 O₂ presence increases rate of oxidative degradation
- 3. Light: provides energy for photochemical reactions (rancidity, flavour change), colour fading, nutrient (vitamin) oxidation
 O Also encourages growth of some microbes by creating warmer environment
- 4. **Temperature:** increases rate of chemical reactions \rightarrow faster food degradation
- Water determines texture, softness, "juiciness" (depends on how water molecules are present)
 - 0 H₂O may be bonded to carbs or protein **polar groups** OR **free** but linked (H-bond) w/ proteins and polysaccharides
 - Change to forces of attraction (IMFAs) holding carb/protein chains together influences **total water content**
 - I.e. pH or temp. change \rightarrow disrupts IMFAs \rightarrow changes H₂O content \rightarrow affects texture, softness, juiciness, etc.

F.3.2 § EXTENDING SHELF LIFE

- Involves reducing rate of fat rancidification
- 1. Packaging:
 - Opaque packaging / coloured bottles reduce photo-oxidation
 - Gas-impermeable wrapping reduces exposure to O₂ and H₂O vapour; free space in container also minimized
 - Vacuum packaging / filling container w/ inert gas \rightarrow e.g. potato chips packed in bags w/ N₂

2. Storage:

- Refrigeration \rightarrow reduces rate of degradation reactions (e.g. dairy)
- Dark storage (oils + fats) \rightarrow reduced photo-oxidation (which is less affected by temp.)
- Reducing H₂O c (drying or smoking) and storing w/o moisture \rightarrow reduces hydrolytic rancidity / microbe growth
- 3. Additives:
 - Salting (high [salt]) and preserves (high [sugar]) create hypertonic environments → food is dehydrated + kill microbes
 → reduces hydrolytic rancidity
 - SO₂ and Na₂SO₃ (fruits) and sodium/potassium nitrates/nitrites (curing meats) → reducing agents; prevent oxidative reactions (e.g. browning if stored too long)
- 4. Anti-microbial:
 - Pickling → vinegar creates acidic environment hostile to microbe growth; other organic acids/salts added to discourage mould/fungus/bacterial growth
 - E.g. benzoic acid NaBenzoate to fruit juices; Propanoic acid + NaPropanoate + CaPropanoate to bread/cheese
 - **Fermentation:** produces ethanol (limits bacterial growth), e.g. wine, beers, distilled spirits (higher % alcohol)

F.3.3 § FAT RANCIDITY

- **Rancidity:** food degradation \rightarrow development of unpleasant smells in fats and oils, often w/ changes in texture/appearance
 - a) <u>Hydrolytic rancidity</u> → ester bond (glycerol-f. acid bond) broken w/ lipase, heat, moisture → glycerol + free f. acids • Smaller (4-8 C) fatty acids (Butanoic, hexanoic, octanoic) → unpleasant smell/taste, e.g. in milk, butter
 - Sinaller (\neq 0 c) fatty actus (butanoic, nexalioic, octanoic) > unpreasant sinch/taste, e.g. in mink, butter • Longer chains less volatile \rightarrow smell/taste less noticeable BUT free f. acids (stearic, oleic) \rightarrow fatty/soapy feel
 - Hydrolysis rate increases w/ enzymes (lipase) produced by microorganisms on food or deep-frying (hydrolytic reaction btwn cooking oil and food moisture)
 - b) Oxidative rancidity \rightarrow "auto-oxidation" \rightarrow C=C (unsaturated lipids) with atomospheric 0₂; less in saturated lipids
 - \circ Complex **free-radical** reactions \rightarrow variety of products w/ unpleasant odour/taste
 - o Light (esp. UV) leads to photo-oxidation, also creates free-radicals
 - Enzymes (e.g. microorganisms) catalyze oxidative rancidity

F.3.4 § FREE-RADICAL CHAIN REACTION

- 1. Initiation: unsaturated lipids exposed to light (UV photo-oxidation \rightarrow high E_A) \rightarrow homolytic fission of C-H bond • May also occur from decomposition of **hydroperoxides** (product of rxn) catalyzed by transition metal ions
- 2. **Propagation:** HC free radicals + $O_2 \rightarrow$ peroxide radicals \rightarrow abstract H from other molecules \rightarrow HC radicals re-formed • Continue until termination reaction **destroys** free radicals \rightarrow this is rare (1 radical must meet another directly) $\rightarrow 1$
- step can produce high [hydroperoxides]
- 3. Termination: removal of free radicals from system by radical-radical reaction; 3 combinations for this step • Hydroperoxides (ROOH) are very reactive \rightarrow gradually converted to aldehydes / ketones (bad smell)
 - Aldehydes oxidized to long chain fatty acids \rightarrow bad taste/smell ("rancidity" / "spoiling")

F.3.7 ANTIOXIDANTS

- Antioxidant: substance added to food to increase shelf life \rightarrow delays onset of oxidative degradation (interferes w/ autooxidation). Many react w/ oxygen radicals \rightarrow "nullify" them (prevent them from degrading food). Natural antioxidants:
 - Vitamin C (ascorbic acid) \rightarrow citrus fruits, green veggies
 - **Vitamin E** (a-tocopherol) \rightarrow nuts, seeds, soya beans, whole grains, some veggie oils (canola)
 - \circ **B-carotene** \rightarrow carrots, broccoli, tomatoes, peaches
 - **Selenium** \rightarrow fish, shellfish, meat, eggs, grains \rightarrow vital in trace quantities, toxic in high [].
- **Synthetic antioxidants** \rightarrow BHA, BHT, PG, THBP, TBHQ \rightarrow all have **phenolic** structures (OH attached to benzene) \rightarrow not found in natural antioxidants \rightarrow may have harmful side effects, but no concrete proof
- **Traditional** antioxidants \rightarrow green tea, turmeric, oregano, blueberries, cranberries, dark chocolate, red wine \circ Claimed to reduce LDL, blood sugar, BP, cancer cell development \rightarrow not vet proven
- 1. Free radical quenchers: reacts w/ free radicals to produce less reactive substances (less reactive radicals) O E.g. vitamin E; BHA, TBHO, BHT
- 2. Chelating agents: form very stable complex ions w. transition metals (react w/ hydroperoxides to produce free radicals) \rightarrow reduce frequency of these reactions
 - E.g, rosemary, tea, mustard, EDTA (artificial)
- 3. **Reducing agents:** react w/ both 0 in food and hydroperoxides (initially from auto-oxidation) → "deactivated"
 - E.g. vitamin C. carotenoids (B-carotene); also artificial preservatives SO₂, sulfites, nitrites

Advantages:

- Natural vitamins (C, E, carotenoids) reduce cancer/heart disease risk \rightarrow inhibit free radicals
- Vitamin C is vital in hormone production + collagen; B-carotene as margarine additive (colour) and vitamin A precursor **Disadvantages:**
- Consumers perceive synth antioxidants as "less safe" (not naturally-occurring)
- Natural antioxidants add colour and aftertaste; less effective at slowing rancidification than synth
- Synth antioxidants are "food additives" \rightarrow must be regulated by policies/legislation for safety
- Policies on labelling / safe additive use can be difficult to monitor, esp. in developing countries (exporting countries)

F.4 ♦ COLOUR

F.4.1 ◊ DYES AND PIGMENTS

- **Pigments** : colouring materials **naturally** present in foods
- **Dyes**: synthetic or natural (from different source) coloured compounds added to **enhance appearance** of processed food • Usually H₂O-soluble \rightarrow thoroughly tested for safety
- **Colour** produced when certain frequencies of light are **absorbed** while **reflecting** others \rightarrow stimulate eye retina \rightarrow i.e. Colour of food depends on reflected light

F.4.2 \$ ANTHOCYANINS

- Most common pigments \rightarrow reds, pink, purple, and blues (berries, beets, red cabbage, many flowers)
- All have similar **3-ring** $C_6C_3C_6$ structure w/ conjugated **double bonds** \rightarrow vary in #/position of OH / alkoxy side chains • Often found bonded to **sugar** side chains \rightarrow changes their colouring
- Structure dependent on **pH** \rightarrow both in acid-base rxns and effect of pH on ease of hydration \rightarrow colour of anthocyanin foods varies w/ cooking or when mixed w/ acid/alkali ingredients
- Form complex ions w/ metal ions (Fe³⁺ / Al³⁺) \rightarrow prolonged contact (i.e. w/ kitchen utensils) causes colour change
- (a) high temp \rightarrow decomposition \rightarrow "browning" during cooking
- Exists in **4** related structural forms in **equilibrium** \rightarrow position depends on pH, temperature, etc. \rightarrow act as acid/base ind.
 - A and B are most brightly coloured \rightarrow stable at low temperatures (A at low pH) \rightarrow absorption spectrum **varies** w/ pH
 - 5

- **Low pH** \rightarrow flavylium cation (AH⁺) \rightarrow red
- Neutral pH \rightarrow enough [OH] for \rightarrow flavylium hydrolysed \rightarrow carbinol pseudobase (B) + chalcone (C) \rightarrow colourless
- **High pH** \rightarrow flavylium cation converted \rightarrow quinoidal base (A) \rightarrow shifts all equilibria to A \rightarrow **blue**
- **Flavanones**: closely related to anthocyanins; found in many berries and grapes

F.4.3 ¢ CAROTENOIDS

- Widely found in all living things → yellow, orange, reds → algae, carrots, bananas, tomatoes, saffron
 Low levels in grass, but eaten by cows and concentrated in milk fats → give butter yellow colour
- Nutritional value → converted into **vitamin A** and are effective antioxidants
- Essential structural feature: long hydrocarbon chain (sometimes w/ attached methyls, or rings at end)
- Some have **hydroxyl** groups near chain end / on ring; BUT **carotenes** have hydrocarbon structure instead (e.g. on ring)
- Relatively **stable** in most food-processing stages (pH 2-7) \rightarrow do not lose colour easily
 - Excess heating (>50°C) causes some discolouration and changes trans double bonds to cis
 - Like (poly)unsaturated lipids, carotenoids vulnerable to **oxidative degradation** (light-accelerated → ROOH radicals)
 - \circ Oxidative degradation also catalyzed by transition metal ions \rightarrow if oxidized/decolourized \rightarrow can't become vitamin A
- Astaxanthins: red pigment related to carotenoids → found naturally bonded to proteins (which modify absorbency frequencies → blue-green colour in lobsters and crabs)
 - **High temp**. disrupts bonds w/ protein so **blue-green** \rightarrow red during cooking
 - Like carotenoids, acts as antioxidant (shrimps/prawn shells are "healthy") \rightarrow also causes pinkness of salmon meat

F.4.4 \$ CHLOROPHYLLS

- **Green**-coloured pigments \rightarrow catalyse photosynthetic processes in green plants/vegetables
- Chlorophyll $a \rightarrow Mg^{2+}$ @ ring centre; has methyl group; Chlorophyll b has aldehyde
- **Cooking** \rightarrow plant cells break down \rightarrow releases acids (decrease pH)
 - Chlorophylls **stable** in neutral and alkaline; in **acidic** \rightarrow H⁺ displaces Mg²⁺ into solution \rightarrow **olive-brown** pheophytin
 - \circ $\,$ These changes also make pigment less stable in light \rightarrow photodegradation

F.4.5 & HEMES

- **Red** pigment in erythrocytes of higher animals \rightarrow similar structure to chlorophyll w/ Fe²⁺ instead of Mg²⁺
- **chlorophylls** AND hemes \rightarrow planar ring systems w/ metal ion bonded to 4 N ligands \rightarrow "poryphyrin" ring
- **Muscles** \rightarrow heme associated w/myoglobin (quaternary protein) \rightarrow purple-red
 - Binds easily to O_2 (oxygen transporter) \rightarrow colour change \rightarrow bright red
 - Auto-oxidation \rightarrow much slower rxn w/ O_2 causes Fe²⁺ \rightarrow Fe³⁺ \rightarrow forms metmyoglobin (brownish-red)
 - Colour of meat can be preserved by storing in O₂-free environment, vacuum-packing, packing in inert gas (CO₂), w/ polymers of low gas permeability

F.4.6 & PIGMENT STRUCTURE AND COLOUR

- **Delocalised** π -**bonding** \rightarrow allows compounds to absorb/reflect light in visible spectrum \rightarrow **colour**
 - Greater delocalisation \rightarrow bonding and anti-bonding π -orbitals **closer in energy** \rightarrow region in in which **photons** excite efrom one to another shifts from **UV** (benzene) \rightarrow **visible**
 - **Conjugated** double bonds (alternating single/double, i.e. resonance) → **extensive** delocalisation
 - In anthocyanins \rightarrow delocalisation extends over all three rings, unless sp³ C exist (break π -delocalisation, e.g. carbinol)
 - In <u>carotenoids</u> → rings themselves not fully delocalised BUT delocalised system spreads from ring sections close to chain → along entire HC chains
 - In **<u>chlorophyll</u> + <u>heme</u>** → delocalisation of ring surrounding metal ion extends **slightly** into side chains
- Anthocyanins \rightarrow many OH attached to ring \rightarrow H-bond w/ H₂O \rightarrow water-soluble
- **Carotenoids** \rightarrow long hydrophobic HC chain, OH on chain not enough to overcome long hydrophobes \rightarrow lipid-soluble

F.4.7 § SAFETY ISSUES WITH SYNTHETIC COLOURANTS

- If synthetic die is **biologically active** → health threat
 - NO international standards (banned in one country, legal in another) → difficulties for int'l trade
 - Synthetic dyes like **malachite green** and **sudan red** \rightarrow found in imported food, even though banned in many countries
- Acute (short term) toxicity is easy to test for BUT chronic effects are difficult to prove (especially w/ carcinogens)

F.4.8 \$ NON-ENZYMATIC BROWNING AND CARAMELIZATION

- Cooking foods causes browning (often used as indicator for sufficient cooking) → colour change is combo of **2 processes**:
- 1. **Maillard reactions:** cause smell + colour change of common cooking processes (grilling meat, toasting bread, malting barley, making fudge, self-tanning) → **condensation reactions** with proteins and sugars
 - Aldehyde group in **reducing sugars** (glucose, lactose) reacts w/ **amino group** of a. acid or on side chains of peptides

 Reducing sugar + amino acid → initial condensation product
 I
 - Initial products polymerise → brown pigments (melanoidins)
 - Great variety of reactants = great variety of products (>1000 identified)
 - o Polymeric products give golden-brown colour; lower-molar-mass products cause smell/flavour change
 - Usually occur > 140°C; rate varies w/ amino acids involved \rightarrow cysteine is least reactive, lysine is VERY reactive \rightarrow milk (high [lysine]) browns quickly (fudge) \rightarrow e.g. heating sugar + cream to make toffees, caramels, fudges
- 2. **Caramelisation:** foods w/ high [carb] heated and dehydrate
 - Initially, polymerization (variety of products causing brown colour); if continued \rightarrow
 - $C_{(s)}$ production and food burns, i.e. $C_n(H_2O)_n \rightarrow nC + nH_2O$
 - Rate varies w/ involved sugar (fructose is easiest); extreme pH promotes caramelisation
 - Maillard reactions require proteins (a. acids) → browning of foods w/o proteins (toffee from sugar, crème brulée and other baked-egg dishes) are caused by caramelisation → also produces volatile aromas (caramel)

F.5 ◊ GENETICALLY MODIFIED FOODS

F.5.1 ◊ PROS AND CONS

Foods made from artificial modification of DNA sequence of micro-organisms, plants, and animals

Advantages:

- Pest & disease resistance: increases yield and health of many plants/animals; reduces need for chemicals/vaccines
- O Lowers treatment costs & harmful toxins in environment/food residues; can improve taste/quality
- \circ "Bio"-products (herbicides, etc.) \rightarrow natural, friendly alternatives \rightarrow soil, water, H₂O conservation, waste management
- E.g. potatoes resistant to fungal infection; bananas resistant to nematodes
- Improves quality & range: many crops geographically limited (specific growth conditions req'd)
- GM enables production of varieties that can grow in wide climate range, produce bigger yield, and mature faster
 E.g. high-yield rice enriched w/ vitamin A, and maize, that can grow in low-rainfall areas
- Production of medicinal/novel products: GM used to enable plants/animals to produce what they normally wouldn't
- Can produce **biologically-active** molecules for use as medicines
- E.g. GM hens lay eggs w/ human interferon; cows give milk w/ omega-3 fatty acids

Disadvantages:

- **Human health risks:** people confortable w/ natural foods may be allergic to GM variants
- Chemical composition of GM foods may be slightly different and alter balance of our diets \rightarrow alter body chemistry
- Environmental concerns: GM foods are currently limited to certain farms, but pollen/animals may escape and spread
- Unknown consequences: GM is a recent technology → do we understand enough to avoid unpredictable catastrophe?

F.6 ♦ TEXTURE

F.6.1 & DISPERSED SYSTEMS

Food **texture** depends on physical properties (hardness, elasticity, etc.)

• Often affected by **cooking** (meat and veggies become softer as cell structure breaks, cookies harden as H₂O lost). **Disperse system:** stabilized, macroscopically homogeneous mixture of 2 immiscible phases (creamy texture):

- a) Liquid-solid: suspensions/sols (solid particles suspended in liquid, e.g. RBCs and WBCs suspended in blood plasma) and gels (liquid particles suspended in solid medium, e.g. fruit jelly, w/ H₂O trapped in protein matrix)
- b) Liquid-liquid: emulsions → stable blend of 2 immiscible liquids, e.g. mayonnaise (suspension of oil droplets in aqueous system)
- c) Liquid-gas: foams (gas bubbles trapped in liquid medium, e.g. whipped cream) and aerosols (liquid droplets suspended in gas, e.g. smells in food and cooking)

F.6.2 **& EMULSIFIERS**

- Why do phases **not** separate? \rightarrow they often do, only VERY SLOWLY (i.e. by gravity and differing densities)
- Colloids: disperse systems which will NEVER separate naturally → often because particles have charge and repel (i.e. they will never coalesce and settle)
- **Emulsifiers:** substances used to promote mixing of 2 phases; paired with **stabilisers** (inorganic phosphates like Na₃PO₄) to slow separation process
 - Emulsifiers can bond to **both phases** \rightarrow found @ surface btwn phases ("**surfactants**") \rightarrow e.g. soap molecules
 - Metal ions from surroundings incorporated into foams (e.g. egg whites) and act as stabilisers
 - **Lecithin** \rightarrow most common emulsifier in food preparation \rightarrow naturally-occurring **phospholipid** in egg yolk
 - Many charge centres and 0 atoms @ one end (hydrophilic → bonds to water) + 2 hydrocarbon chains (break H-bonds in water, but cannot form H-bonds of their own → hydrophobic → bonds to non-aqueous phase)
 - Mayonnaise \rightarrow oil + vinegar + egg yolk all beaten together \rightarrow hydrophilic end bonds to vinegar and HC tails w/ oil
 - \circ Each oil droplet surrounded by lecithin \rightarrow beating increases SA for surfactant adsorption by creating smaller droplets

F.9 ◊ STEREOCHEMISTRY IN FOOD

F.9.1 § ENANTIOMER NOMENCLATURE

- Enantiomer pair \rightarrow 1 is **dextrorotatory** (right, + or (*d*)) and other is **laevorotatory** (left, or (*l*)) body can metabolize **1**
- Rotation direction NOT indicative of spatial arrangement (**absolute configuration**) \rightarrow 2 systems for this:
- 1. D,L System: older convention used for sugars + amino acids
 - Absolute configuration of molecule is compared to glyceraldehyde (1st abs. config. to be determined, by a guess)
 - **Sugars:** molecule viewed along chain w/ C=O pointed **away**; **D**-isomer has OH on **right** (L has OH on left)
 - Amino acids: molecule viewed w/ C-H bond pointing away \rightarrow if COOH, R, NH₂ is in clockwise order, then D-isomer;

 \rightarrow if **anticlockwise**, **L**-isomer \rightarrow "CORN" acronym

- Almost **all natural amino acids are L** (tasteless; artificial D amino acids are sweet)
- Almost all natural sugars are D (sweet)
- 2. **<u>R,S System:</u>** "CIP" \rightarrow used for most other compounds. 3 steps:
 - I. Atoms bonded to **chiral carbon ranked** in order of **increasing atomic #** (H<C<N<O<F<C<Br)
 - II. For multiple of same atom (e.g. 1 CH₃ and 1 COOH), **second** atoms used to rank substituents (CH₃<COOH since 3 x # of H is less than # of O) \rightarrow third, fourth, atoms may also be used if same; also, **double bond** counts as double (COOH = 3 x O)
 - III. Imagine viewing molecule w/ lowest-rank substituent pointing away
 - if other 3 substituents decrease **clockwise** \rightarrow **R**-enantiomer (e.g. R-2-bromobutane)
 - if other 3 substituents decrease **anticlockwise** \rightarrow **S**-enantiomer (e.g. S-2-bromobutane)

F.9.2 § FOOD ENANTIOMERS

- Enantiomers in food, despite similarity, have different smells, tastes, and toxicity → e.g. carvone (a "terpenoid")
 Laevorotatory R-form → smell and flavour of spearmint
 - **Dextrorotatory** S-form \rightarrow smell and flavour of caraway seeds
- E.g. **limonene** (related molecule): +(*d*)-limonene is orange-smelling; -(*l*)-limonene is lemon-smelling
- Biosynthesis is stereospecific → often, a natural flavour is a pure enantiomer (not racemic), e.g. α-ionone (raspberries)
 Natural material is stereospecific R-α-ionone; synthetic is a racemic mixture of R and S (easier to make)
- Enantiomer **toxicity** may vary, e.g. **thalidomide**