Quiz I: Gases

SCH3U_2016 - 2017_V 4	HAME:	
	(Total Score: /10)	
In all weaklangs places he contain to show the		

In all problems, please be certain to show the:
(a) original form of a formula, (b) any formula rearrangements
Please pay particular attention to units and significant figures.

1. Anesthetic gas is normally given to a patient when the room temperature is $22.0\,^{\circ}$ C. What would be the volume of $1.45\,L$ of an anesthetic gas in the body of a patient where the temperature is $37.0\,^{\circ}$ C? (Assume the pressure and the moles of gas remain constant.)

- 2. Jupiter's atmosphere contains a high concentration of a gas unknown on Earth, it contains 64.8 % carbon, 13.5 % hydrogen and 21.7 % oxygen.
- a. Calculate the empirical formula of this unusual gas.

3

b. On the surface of Jupiter, where the temperature is 208 °C and the pressure is 98.3 54.5 cm ³ of this gas has a mass of 0.100 g. Calculate the molar mass of the gas.	kPa,
c)Use the results of your calculations on parts (a) and (b) to determine the molecular for the gas.	ormula of 1
Multiple Choice (1)	
1. At a certain temperature and pressure, 0.20 mol of $CO_{2(g)}$ has a volume of 3.0 L. A 3.0 L sample of hydrogen gas at the same temperature and pressure:	
a. has a higher densityb. contains the same number of molecules	
c. has the same massd. contains the same number of atoms	