Molar Volumes Practice: I

GAS	molar volume at STP	Volume at STP (L)	Moles	Mass (g)	Molar Mass (g mol ⁻¹)	# of molecules
	(L mol ⁻¹)					
NO ₂		22.7				
NH ₃						6.02×10^{23}
SO_2		11.35				
N ₂		45.4				
CH ₄				3.20		
O ₂			3.00			
H ₂ S			0.100			
SO ₃			0.250			
CO ₂			1.50			
Ne						3.10 x 10 ²⁴
H ₂				4.00		
CO				2.80		
NO				45.0		
N ₂ O						3.00 x10 ²³
C_2H_6				6.00		
At STP: no. mols = $\frac{\text{volume (V)}}{\text{molar volume (22.7)}}$						
no. mols = $\frac{\text{mass}}{\text{molar mass}}$ = $\frac{\# \text{ of molecules}}{\text{Avagadro's }\#}$						

no. mols = concentration x volume (L)

Molar Volume: Practice II

1. Ethene gas burns to produce $CO_{2(g)}$ and water vapour :

 $C_2H_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$ (not balanced) From the balanced equation

- (all gas volumes at STP) Given Calculate Volume of O₂ consumed in litres a) 56.0 g C_2H_4 b) 227 L C₂H₄ Volume of O₂ consumed in litres c) 192 g O₂ Volume of CO₂ produced in litres d) 34.1 L C₂H₄ Mass of H₂O produced in grams e) 4.00 moles C_2H_4 Volume of O₂ consumed in litres f) 0.500 moles O₂ Volume of CO₂ produced in litres Moles of H₂O produced g) 53.0 L O₂ h) 3.01 x 10^{23} molecules O₂ Volume of CO₂ produced in litres i) 84.7 L C₂H₄ Molecules of O₂ consumed Volume of H₂O produced in litres j) 82.3 L O₂
- 2. Calculate the volume of $CO_{(g)}$ produced at STP when 36.0 g of carbon burn completely:

$2C + O_2 \rightarrow 2CO$

Molar Volume: Practice III

- 1. What volume, measured at STP, would each of the following gas occupy:
- a) 8.80 g CO_{2 (g)}
- b) 10.0 g H_{2(g)}
- c) 6.00 g $C_2 H_{6 (g)}$
- 2. What is the molar volume of a gas at 100 kPa and 25 °C (sometimes referred to as ambient standard temperature and pressure or SATP),?
- 3. Given the equation: $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$
- a. What volume of CO₂, measured at STP, would be obtained by burning 8.00 g methane, CH₄?
- b. What volume of oxygen gas, at STP would be used if 72.0 g of water are produced?
- 4. Given the equation: $CaH_2 + H_2O \rightarrow Ca(OH)_2 + H_2$
- a. Balance the equation
- b. What volume of hydrogen gas (at STP) would be obtained from 84.0 g CaH₂?
- c. What volume of hydrogen, measure at STP, would be obtained from 1 kg of CaH₂?
- d. What volume would be obtained from 84.0 g of CaH_2 , if the hydrogen is measured at 50.0 kPa and 25 °C?
- 5. What volume of CO₂ at 227°C and 90.8 kPa can be produced from the burning of 66.0 g of C_3H_8 ? (Think: PV = nRT, stoichiometry) $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$