

Chemistry Notes 2: Periodic Trends

Figure 1: Green arrow represents the increase/decrease in Atomic Radius and Metallic Character. Blue arrows represent Effective Nuclear Charge, Ionization Energy, Electron Affinity, and Electronegativity.

EFFECTIVE NUCLEAR CHARGE

- The attractive force between the nucleus and the valence electron(s) of an atom
- Increases across the period
 - The atomic number increases from left to right because of the increase of protons
 - The increased amount of protons creates a stronger attractive force between the protons and valence electrons
 - The number of energy levels does not change across a period therefore there is no shielding effect that cancels out the attractive force
- Decreases down a group
 - Core electrons repel each other, negating the effect of the increased number of protons

ATOMIC RADIUS

- Distance from the center of the nucleus to the highest energy level
- Decreases across a period
 - Because effective nuclear charge increases across a period
 - The attraction between the increased number of protons and electrons pulls the energy levels closer to the nucleus
 - o Therefore there is a smaller atomic radius

- Increases down a group
 - Because more energy levels are being added

IONIC RADII

- Cations
 - o Smallest radius
 - Less negative charge from electrons
 - Therefore greater positive attractive force pulling the energy levels towards the nucleus
- Anions
 - o Greatest radius
 - More negative charge from electrons
 - The increase of negative charge causes the electrons in the different energy levels to repel away from each other
 - Therefore greater negative repulsive force spreads energy levels apart

IONIZATION ENERGY

- Energy required to remove an electron from a gaseous atom to form a **cation**
- Depends on
 - Effective Nuclear Charge
 - o Atomic Radius
 - o Shielding effect
- Increases across a period
 - Due to the increase in effective nuclear charge
 - Stronger attraction between electrons and nucleus requires more energy to remove an electron
- Decreases down a group
 - Due to the increase in effective nuclear charge
 - Weaker attraction between electrons and nucleus requires less energy to remove an electron
- Formula:
 - $\circ \quad X_{_{(g)}} \ + \ IE \ \rightarrow \ X^{^{1+}}_{_{(g)}} \ + \ e^{\text{-}} \quad \ (\text{Where IE is ionization energy})$

METALIC CHARACTER

- Amount of electrons that need to be added
- Decreases down a period
- Increases down a group

ELECTRON AFFINITY

- Measure of the attraction an atom has for electrons other than its own
- Energy released when an electron is removed from a gaseous atom to form **anion**
- Increases across a period

- $\circ~$ Because non metals (right side of the PT) need to add electrons to form their stable octet
- $\circ~$ When atoms reach their stable octet, they release the energy that was making them unstable
- Decreases down a group
 - Because there is a greater atomic radius, so there is less of the attractive force to add electrons

ELECTRONEGATIVITY

- Measure of the attraction an atom has for electrons in a covalent bond (non metal + metal where electrons are shared)
- The measure is assigned values from 0-4
- The difference between the values of two atoms will determine what type of bond they will form
- **Note: Values are listed on the Periodic Table
 - \circ 0 Noble gasses
 - $\circ~$ Less than 0.6 $\,$ Purely covalent bond
 - o 0.6-1.6 Polar covalent bond
 - $\circ \quad \mbox{Greater than } 1.6 \mbox{Ionic bond}$
 - \circ Example: Ga + S
 - S has a value of 2.58, Ga has a value of 1.81
 - $\bullet \quad 2.59 1.81 = 0.77$
 - Therefore Ga + S is a polar covalent bond
- The greater difference between the two Electronegativity values of two atoms will make the bond more polar
- Increases across the table
- Decreases down the group
- Formula:
 - $\circ \ \ X_{\scriptscriptstyle (g)} \ + EA \rightarrow X^{^{1+}}{}_{\scriptscriptstyle (g)} \ + \ e^{\text{-}}$ (Where EA is Electron Affinity)

MULTIPLE IONIZATION LEVELS

- IE_1 is the energy necessary to remove the first electron
 - $\circ \quad \mathrm{M}_{\scriptscriptstyle(\mathrm{g})} + \mathrm{IE}_{\scriptscriptstyle 1} \to \mathrm{M}^{\scriptscriptstyle 1+}$
- IE_2 is the energy necessary to remove the second electron o $M^{1+}_{(g)} + IE_2 \rightarrow M^{2+}$
- IE_3 is the energy necessary to remove the third electron

$$\circ$$
 M²⁺_(g) + IE₃ \rightarrow M³⁺

- The jumps in the IE occur because of the breaking of full octets
 - $\circ~$ The jump in energy will occur in IE_x where x-1 represents the group number the element belongs to
 - OR
 - $\circ~$ In group X, all the element's IE jumps will occur at $IE_{x^{+}1}$
- Elements with lower IE_1 will be metals
 - $\circ~$ Metals lose electrons, therefore less energy is required to remove them (Ionization Energy)

- Elements with higher IE₁ will be non metals

 Non Metals gain electrons, therefore more energy is required to

 remove them (Ionization Energy)