Avogadro's Number and the Mole The mathematical relationships derived from the mole concept are: a) number of moles (n) = number of particles (atoms or molecules)(p) number of particles in one mole (Avogadro's Number)(N_A) or $$n = \underline{p}$$ b) number of moles, n = mass of the substance (m) in g = mmolar mass (M) in g mol⁻¹ 1. How many atoms are present in: - a) 3.3 mol of Kr - (b) 2.25 mol of W (c) 1.41 mol of Ho - (d) 1.23 mol of Ir 2. How many moles are there in: - a) 2.75×10^{21} atoms of Kr (b) 2.95×10^{24} atoms of Zr (c) 7.92×10^{22} atoms of Fr 3. How many moles are there in: - c) 8.72×10^{17} molecules of SO_3 - a) 8.72×10^{17} molecules of CO (b) 1.22×10^{22} molecules of KCN (c) 8.72×10^{17} molecules of SO₃ (d) 3.93×10^{18} molecules of H₃PO₄ 4. What is the number of carbon atoms in 3 moles of sucrose molecules, $C_{12}H_{22}O_{11}$? - 5. What is the mass of each of the following: - a) 1.55 moles CuCl₂ (b) 0.522 mol NaClO (c) 6.55 mol KClO₃ (d) 0.225 mol NiCl₂. 6H₂O 6. What is the number of molecules in each of the following: - a) 40.2 g CaSO_4 (b) $0.111 \text{ g C}_2\text{H}_5\text{OH}$ (c) $7.14 \text{ g Al}_2\text{S}_3$ (d) $54.54 \text{ g H}_2\text{C}_2\text{O}_4$ 7. What is the mass of: - a) 3.33×10^{18} molecules of CH₄ (b) 7.85×10^{26} molecules of Ca(HCO₃)₂ - d) 5.57×10^{27} molecules of Sb₂S₃ (d) 1.10×10^{20} molecules of AuCl₃ 8. The number of moles of oxygen atoms present in each of the following is: - a) 7.0 g CO_(s) molecules - (b) $14.2 \text{ g H}_2\text{C}_2\text{O}_{4 \text{ (aq)}}$ - (c) $156.0 \text{ g NH}_4\text{NO}_{3(s)}$ - d) $392 \text{ g H}_2SO_{4(aq)}$ - (e) $3.42 \text{ g C}_{12}H_{22}O_{11(s)}$ - (f) 1.25 g $HMnO_{4(aq)}$ 9. Name all the chemicals in question in questions 5 - 8.