Problems: Percent Yield

1. What is the limiting reagent when 50.0 g of nitrogen reacts with 10.7 g of hydrogen according to this balanced equation?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

2. How many grams of CO are needed to react with an excess of Fe₂O₃ to produce 558 g Fe? The equation for the reaction is:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 3CO_2(g) + 2Fe(s)$$

- How many grams of butane (C₄H₁₀) must be burned in an excess of O₂ to produce 15.0 g of CO₂? $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$
- a) If 4.0 g of H₂ are made to react with excess CO, how many grams of CH₃OH can theoretically be produced according to the following equation?

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

- b) If 28.0 g of CH₃OH are actually produced, what is the percent yield?
 - Ammonium nitrate solution, NH4NO3, reacts with barium chromate solution, BaCrO4, in a classic double displacement reaction. If one initiates the chemical reaction with $18.70~\rm g$ of ammonium nitrate and $15.60~\rm g$ of barium chromate, determine:
- a) the balanced equation
- b) the grams deficient of the limiting reagent
- c) the grams extra of the excess reagent
- d) the % yield of the "nitrate product" if, experimentally, one gathers 11.30 g of the nitrate product.