Chemistry: Unit 2 Review

Brett Anderson

Equations:

Avogadro's Number (N_{Δ}) = 6×10^{23} molecules

$$n^{\circ}$$
 of moles = $\frac{\text{mass (g)}}{\text{molar mass (g/mol)}}$

$$n^{\circ}$$
 of molecules = $(n^{\circ}$ of moles) × (N_{A})

% Composition =
$$\frac{\text{mass (g) or (g/mol)}}{\text{total mass (g) or (g/mol)}} \times 100$$

Excess Reagent = Total Moles of Xs Reagent - Amount of Xs Reagent Used

% Yield =
$$\frac{\text{Actual Yield (experimental)}}{\text{Theoretical Yield}} \times 100$$

Definitions:

Formula Mass: Is the sum of the atomic masses in an ionic compound (*u*).

Molecular Mass: It is the sum of the atomic masses in a covalent compound (*u*) **Molar Mass:** Refers to the sum of atomic masses in a compound expressed in g/mol. **Percentage Composition:** Refers to the percent by mass of an element in a compound.

Limiting Reagent: The reactant that is totally consumed, thereby stopping the reaction.

Excess Reagent: The reactant that is not totally consumed in a reaction.

Yield: The quantity of product.

Theoretical Yield: The quantity of product that "should" be produced.

Experimental (Actual) Yield: The quantity of product produced in reality (lower due to errors)

Rules for Empirical Formula:

- 1. 100% = 100g
- 2. Calculate the number of moles of each substance
- 3. Divide the number of moles by the smallest number in order to obtain whole the number ratio.
- 4. Write the simplest (Empirical Formula)
- 5. Determine the molecular mass of Empirical Formula
- 6. To get the multiple of the molecular formula of the compound, divide the molecular weight given by the factor required (molar mass).

Rules for Stoichiometry:

- 1. Balance the equation
- 2. Grams to moles (use molar mass)
- 3. Moles to moles (use stoichiometric coefficients from balanced equation)
- 4. Moles to grams (use molar mass)