Wave

- Where energy is transferred between two points in a medium without any net transfer of the medium itself
- Amplitude
 - The wave height from its position of rest to the crest (the highest point on the wave)
 - The greater the amplitude, the more energy the wave carries
- Frequency
 - Number of oscillations (cycles) the wave performs in one second
 - The higher the frequency, the more energy the wave carries
 - Unit for frequency: hertz (Hz): Cycles per second
- Wavelength
 - The distance between two crests (or troughs) on a wave
 - Measured in centimeters
 - Symbol: λ (Lambda)
- Crest
 - Highest point of the wave
- Trough
 - Lowest point of the wave
- Speed of the Wave
 - Speed of Wave = Frequency x Wavelength
 - $V = f \times \lambda$

Figure 1: Labeling a wave diagram
Light
- Travels through space, as well as some materials
- Behaves in electromagnetic waves
- Does not require a medium for transmission
- Transferred through radiation
- The speed at which light travels is determined by the density of the medium it passes through
- Speed of light through a vacuum: 2.997925×10^{10} cm/sec

Electromagnetic Waves
- Are invisible
- Can travel through a vacuum
- Involve electric and magnetic fields
- Are measured using the electromagnetic spectrum

Electromagnetic Spectrum
- Order (lowest frequency to highest frequency)
 - Radio, Microwave, Infrared, Visible (red, -> orange, -> yellow, -> green, -> blue, -> violet), Ultraviolet, X-Ray, Gamma Ray
- We can only see the ‘visible’ part of the spectrum
- The colours differ because they have different wavelengths (red with the greatest, (less energy) and violet with the smallest (more energy))
- Visible light has a wavelength range of about 3900 Å to 7700 Å

Additive Colour Theory of Light
- The three primary colours of light are blue, green and red
- If any two of these colours are mixed, a secondary colour may be obtained

Subtractive Colour Theory of Light
- When light strikes an object some wavelengths of light reflect off the object
- Other wavelengths are absorbed by the object
- Colours of objects depend on the wavelengths that are reflected
- Colours that are absorbed are ‘subtracted’ from reflected light that we see
- Example: Blue objects reflect blue and absorb all other colours
- Black objects absorb all colours
- White objects reflect all colours

Light from the Sun
- Result of a fusion reaction
- Hydrogen atoms combine to produce helium – energy is released
- Excited atoms release this energy in the form of light (photons)

Light from Incandescence
- Light emitted because of high temperatures
- Higher temperature, different colours (from red -> orange -> yellow -> white -> bluish white)
• Incandescent light bulbs have a tungsten filament that glows when an electric current (that causes the tungsten to heat up) passes through it.
• Incandescent light bulbs use 5% to 10% of the electricity given to produce light, the rest wasted as heat

Light from Electric Discharge
• Light emitted by passing an electric current through a gas
• In an electric discharge tube
 o A vacuum lowers the pressure
 o Small amount of gas (ie nitrogen) is placed in the tube
 o Electric current passes through the gas, exciting the atoms
 o Excited release their excess energy, emitting light in the process
 o The light’s colour is characteristic to the gas
 ▪ Na – Yellow
 ▪ Ne – Red
 ▪ He – Gold
 ▪ Ar – Periwinkle
 ▪ Kr – Grey-off-white
 ▪ Hg – Blue/green

Light from Phosphorescence
• Light emitted because of exposure/absorption of UV light, but will continue to admit light during the absence of UV light for an extended period
• Glow in the dark

Light from Fluorescence
• Light emitted because of absorption of UV light
• Florescent Light Tubes
 o Tube is filled with mercury gas at a low pressure
 o Inside is coated with a fluorescent powder (ie phosphorus powder)
 o Energy causes the electrodes to emit electrons
 o When electrodes collide with mercury, the atoms become exited
 o Mercury atoms release excess energy as UV light, which is absorbed by the phosphorus lining, causing it to emit visible light
 o Fluorescent light bulbs are 4-5 times more efficient than incandescent bulbs (produce the same amount of light, but less heat and energy)

Light from Luminescence
• Light emitted from an object that has not been heated
 o Chemiluminescence
 ▪ Light produced by a chemical reaction
 ▪ No heat produced
 ▪ Example: Glow-sticks
 o Bioluminescence
 ▪ Light produced by living organisms as a chemical reaction (or chemiluminescence in an organism)
 ▪ Little or no heat produced
 ▪ Example: Fireflies
Triboluminescence
- Light produced by scratching, rubbing or crushing certain crystals

The Ray Model of Light
- Light will travel in a straight line if it is moving through the same medium
- Light can change directions using reflection and refraction
- Ray: path followed by light in one direction
- Beam: a bundle of rays
- Converging beam: rays move closer together
- Diverging beam: rays moving further apart
- Ray Diagram: drawings that show the path of rays
- Geometric optics: use of light rays to see the path of where light strikes an object
- Incident Light: light emitted from a light source
- Transparent: transmit all of the incident light, objects can be seen clearly through them
- Translucent: transmit almost all light, some are scattered (absorbed or reflected), so objects are not seen clearly
- Opaque: does not transmit incident light, objects cannot be seen

Shadows
- Formed when some/all of the light hitting an object is absorbed or reflected by it
- Size depends on:
 - Size of the object blocking the light
 - Distance of the object from the light source (further – bigger, closer – smaller)

Reflection: Flat Mirrors
- Mirror: a polished surface that exhibits reflection
- Plane mirror: a mirror with a flat surface
- Reflection: light bouncing back from any surface
- Image: reproduction of an object, produced through light
- Incident ray: original incoming ray
- Reflected ray: ray bouncing off a reflecting surface
- Normal: perpendicular to the plane at which the incident ray hits
- Angle of Incidence: angle between the normal and the incident ray
- Angle of Reflection: angle between the normal and the reflected ray

Laws of Reflection
- $\theta_i = \theta_r$ (Angle of Incidents = Angle of Reflection)
- Ray of incidence, ray of reflection and the normal all lie on the same plane
Figure 2: On a plane mirror, the Normal will be perpendicular to the plane, and the angle of incidence and the angle of reflection will always be the same.

Specular and Diffuse Reflection
- Specular/Regular Reflection: the reflection of light off a smooth surface
- Diffuse/Irregular Reflection: the reflection of light off irregular surfaces

Locating Images in Plane Mirrors
- Four characteristics can describe an image
 - Size – image size compared to the object size
 - Attitude – upright, laterally inverted (left is right, vise versa), vertically inverted (upside-down)
 - Location – image in relation to the reflecting surface (ie beyond C, at F)
 - Type – whether the image is real or virtual
- ** Real Image: rays converging at a point, can be captured on a screen
- ** Virtual Image: cannot be captured on a screen, but can be seen by the eye, will appear behind the mirror

Figure 3: Ray diagram - reflection in a plane mirror

- An image in a plane mirror:
 - Is the same size as the object
 - Is upright, but laterally inverted (right is left, vice versa)
 - Is located the same distanced directly behind the mirror the object is in front
 - Is virtual
Locating Images in Curved Mirrors

- Center of Curvature (C): center of the sphere of which the mirror is formed
- Radius of Curvature: distance from C to the mirror
- Vertex: Middle of the mirror
- Principal Axis (PA): line drawn through the vertex, and is perpendicular to the surface
- Focal Point (F): the point where parallel rays converge that is half the distance from the center of curvature and the mirror on the Principal Axis
- Focal Length (f): The distance between the vertex and the Focal Point
- Converging/Convex Mirrors – light rays come to a point
 - Light rays that are parallel to the principal axis will reflect to go through F
 - Light rays traveling through F will reflect back from the mirror parallel to the principal axis
 - Rays passing through C will reflect back on themselves
 - Rays striking the vertex will reflect back with an angle of reflection equal to the angle of incidence (using the normal, ie the principal axis)
 - When drawing, the first ray will originate from the tip of the object (represented by an arrow), and will be parallel to the principal axis
 - The second ray will originate from the tip of the object and go through F
 - There are five different possibilities of ray diagrams involving concave mirrors

Figure 4: Object beyond C
Figure 5: Object between the Mirror and F

Figure 6: Object between C and F

Figure 7: Object at F
• Diverging/Concave Mirrors – light rays disperse
 o Rays parallel to the principal axis reflect as if they had come from F
 o Rays aimed at F will reflect parallel to the principal axis
 o Rays aimed at CF will reflect back upon themselves