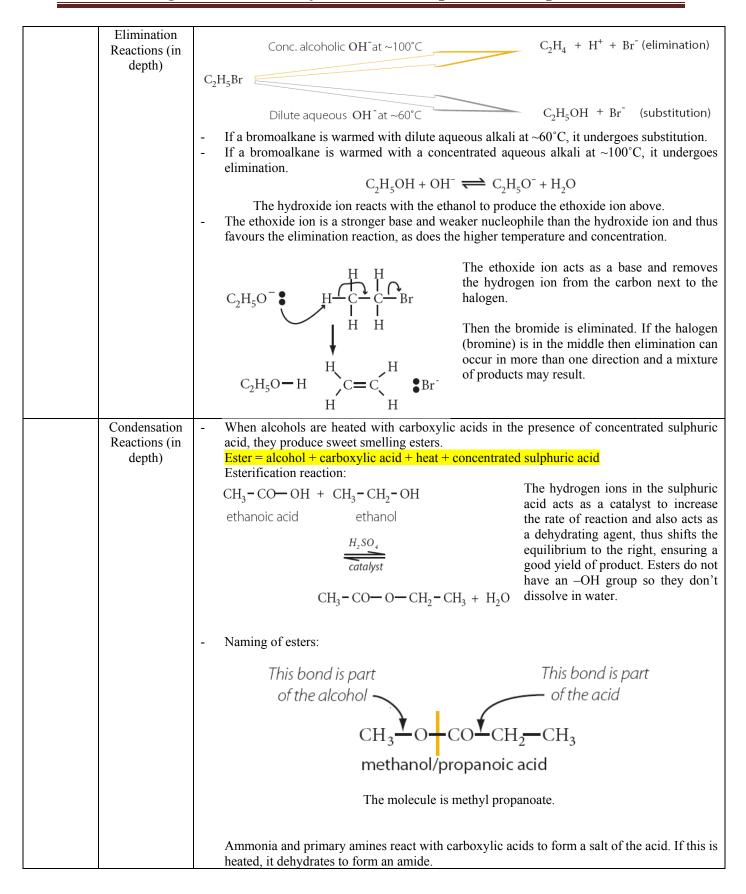
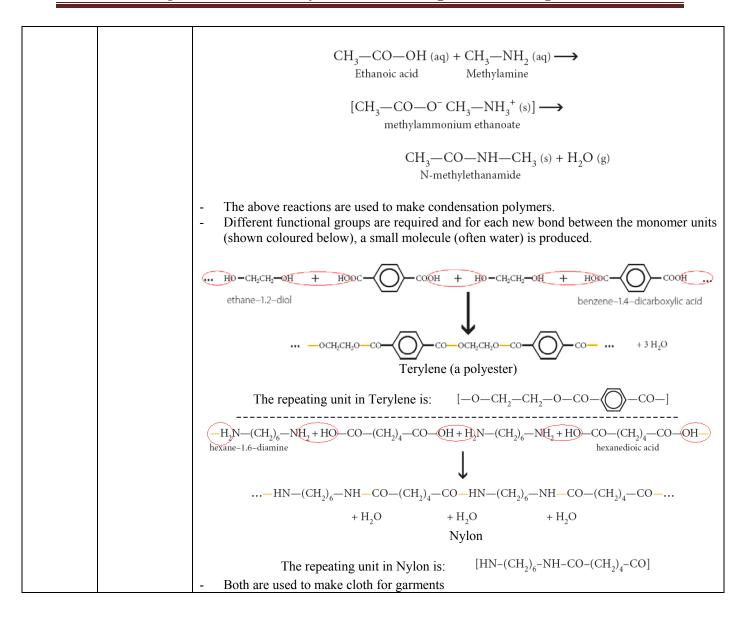

Organic Chemistry Review: Topic 10 & Topic 20

Organia	Machanian	Evouralisa		
Organic Structure	Mechanism	Examples		
Alkanes C - C σ – bond	Substitution (Incoming atom or group will displace an existing atom or group in a molecule)	$Cl - Cl \longrightarrow Cl \cdot + \cdot Cl$ $Figure 1016 - Initiation$ $Cl \cdot + H - CH_{3} \longrightarrow Cl - H + \cdot CH_{3}$ $CH_{3} + Cl - Cl \longrightarrow CH_{3} - Cl + Cl \cdot$ $Figure 1017 - Propagation$ $Cl \cdot + \cdot Cl \longrightarrow Cl - Cl$ $Cl \cdot + \cdot CH_{3} \longrightarrow CH_{3} - Cl$ $Cl - Cl$ $Cl \cdot + \cdot CH_{3} \longrightarrow CH_{3} - Cl$		
		$CH_3 \cdot + CH_3 \cdot \longrightarrow CH_3 - CH_3$		
Alkenes C = C Π — bond	Addition	$C = C + Br_2 \longrightarrow C - C - C - C - Br_2 - C - C - C - C - C - Br_2 - Br_2 - C - C - C - C - C - C - C - C - C - $		
		$\searrow C = C + HCl \longrightarrow - \begin{array}{c} & \\ - & C - C \\ - & H \\ H \\ - & Cl \end{array}$ Spontaneous, (Hydrogen halide), recall Markovnikov's Rule		
		$C = C + H_2 \xrightarrow[Catalyst]{Nickel} H_1 + H_2 \xrightarrow[Katalyst]{Nickel} H_2 + H_2 \xrightarrow[Katalyst]{Nickel} H_2 + H_$		
		$C = C + H_2O \implies -C - C - C - H_2O = -C - C - C - C - C - C - C - C - C - $		
Alcohols R—OH		$C_2H_4(g) + H_2O(g) \xrightarrow{H_3PO_4 \text{ or } Al_2O_3} C_2H_5OH(g)$ Forward reaction: phosphoric acid catalyst at high pressure Reverse reaction: acid catalyst or aluminum oxide		
		$C_2H_5OH(l) \xrightarrow{excess H_2SO_4 \approx 170 ^{\circ}C} C_2H_4(g) + H_2O(l)$ Dehydration reaction: concentrated sulphuric or phosphoric acid at ~170°C		


Organic Chemistry Review: Topic 10 & Topic 20



	- Secondary halogenoalkanes undergo S _N 1 and S _N 2 mechan	isms	
	- Primary halogenoalkanes undergo S _N 2 (substitution, nucleophilic, bimolecular)		
	$\overline{OH} : \bigcup_{X} C - X$	The bimolecular attack of the hydroxide ion on the halogenoalkane molecules is the rate-determining step. Rate = k $[R-X]1[OH-]1$	
	HOCX	The bond to the hydroxide ion starts to form at the same time as the bond to the halogen breaks.	
		Inversion of configuration results.	
Nucleophilic Substitution Reactions (in depth)	 S_N1 mechanism: Slow heterolytic fission of the carbon-halogen bond to form a carbocation intermediate (rate determining step) Intermediate reacts rapidly with the nucleophile to form the final product S_N2 mechanism: Breaking of the carbon-hydrogen bond occurs simultaneously with the formation of the new bond to the nucleophile The rate at which these reactions occur depends on the nature of both the nucleophile and the halogenoalkanes; therefore S_N2 mechanisms occur more rapidly in aqueous alkali than in neutral solution The nature of the halogen affects the rate of reaction: As the halogen goes down the group (Cl, Br, I), the polarity of the carbon-hydrogen bond decreases and decreases the rate of reaction because the partial positive charge on the on the carbon would become smaller. The decreasing strength of the carbon-hydrogen bond due to decreasing polarity going from chlorine to iodine increases the rate of reaction. 		
	C—Cl C—Br	C—I	
	Decreasing polarity of C—X bond Decreasing strength of C—X bond		
	Increasing rate of reaction	1	
	Figure 1035 Effect of the halogen nucleophilic substitutio		

3. The bond strength is the dominant factor though so an overall increase of the rate of reaction takes place.		
- Tertiary halogenoalkanes react by S_N1 mechanisms and primary halogenoalkanes react by S_N2 mechanisms because:		
 Tertiary carbocations are relatively stable because of the positive inductive effect of the alkyl groups, which reduces the charge on the central carbon, so stabilising the carbocation intermediate required for S_N1. The change from tetrahedral to trigonal planar geometry when the carbocation is formed increases the bond angle from 109° to 120°. In tertiary halogenoalkanes, this allows the alkyl groups to move further apart, stabilising the carbocation by reducing steric stress. 		
 In the S_N2 mechanism, the nucleophile usually attacks the central carbon from the direction opposite to the halogen while in tertiary compounds bulky alkyl groups hinder such an attack. 		
 S_N1 reactions generally occur faster than S_N2 reactions and thus the rate of hydrolysis of halogenoalkanes decreases in the order: Tertiary > Secondary > Primary 		
- Nucleophilic substitution reactions can also react with:		
• Ammonia, :NH3, as the nucleophile to form a primary amine:		
$R - X (I) + NH_3 (I) \longrightarrow R - NH_2 (I) + HX (I)$		
$\begin{bmatrix} H_{3N} - C X \\ M \end{bmatrix}$ Transition state		
$R - X (l) + C = N^{-} (aq) \xrightarrow{H^{+} + H N - C} N^{-} (aq) \xrightarrow{H^{+} + H N - C} C = N (l) + X^{-} (aq)$ Cyanide ion as the nucleophile to form a nitrile:		
$\begin{bmatrix} NC & -C &X \\ \hline \\ Transition state \end{bmatrix}$ S_N^2 mechanism: The triple bond in the nitrile may be readily reduced using hydrogen and a nickel catalyst to form a primary amine or oxidized to form a carboxylic acid. This is a very useful method to ascend the homologous series.		
$R - C = N (I) + 2 H_2 (g) \xrightarrow{NC - C} R - CH_2 - NH_2 (I)$		
This amine has one more carbon than the one formed directly with ammonia.		

Organic Chemistry Review: Topic 10 & Topic 20

