UNCERTAINTY

SCH3UE_2009 - 2010

The experimental uncertainty in a measurement is the best estimate of the total of all inaccuracies present in that measurement. The uncertainty can be expressed in two different ways.

Absolute uncertainty: the size of the uncertainty is expressed, (in only one digit), using units

	with no indication of its importance.				
()	e.g.	<u>+</u> 2 cm	<u>+</u> 0.01 g	<u>+</u> 0.05 cm	<u>+</u> 0.001 mL
Relative uncertainty:	the absolute uncertainty is expressed as a fraction or as a percent of the measured value, and has no units.				
Relative uncertainty = absolute uncertainty					
measured value					
percentage un	certaint	y = relative	uncertainty x	100 %	
	-	= <u>absolut</u>	<u>e uncertainty</u> x	100 %	
		measu	red value		

Performing calculations with measured values and their uncertainties

For Addition and / or Subtraction

- 1. Simply add or subtract the measured values as described by the operation sign.
- 2. Then add together the sizes of all the absolute uncertainties in each measurement to find the total uncertainty.

For Multiplication and /or Division

1. Multiply and /or divide the measured values as described by the operation sign.

2. Add together the sizes of all the relative or the % relative uncertainties for each

measurements being multiplied/divided..

3. The absolute error is then the fraction or the percentage of the answer.

All uncertainty / error values have only one significant figure.

Practice Calculations

1. What is the relative uncertainty for the following:

a. 178.3 ± 0.01 g b. 2.08 ± 0.01 cm³ c. 45.001 ± 0.001 m² d. 35.15 ± 0.02 mL

2. Calculate the percentage uncertainty for question 1.

3. Change the percentage error to absolute error for the following: $a_1 + 0.1\%$ $b_2 + 0.1\%$ $b_3 + 0.2\%$ $c_5 + 3.5 + 3.\%$ $d_1 + 1.26 + 2.\%$

a. $1.098 \pm 0.1\%$ b. $43.00 \pm 0.2\%$ c. $8.35 \pm 3\%$ d. $11.26 \pm 2\%$

4. Change the absolute error in the following measurement to % error: a. 5.23 ± 0.02 b. 4.1 ± 0.1 c. 34.02 ± 0.04 d. 92.38 ± 0.01 5. Propagate the error in the following calculations: a. $43.02 \pm 0.02 - 8.21 \pm 0.03$ b. $92.3 \pm 0.1 - 4.01 \pm 0.02$ c. $5.203 \pm 0.002 + 4.145 \pm 0.002 + 1.12 \pm 0.01$ d. $2.45 \pm 0.01 \text{ g} + 1.22 \pm 0.01 \text{ g}$ e. $3.04 \pm 0.02 \text{ cm} - 1.32 \pm 0.02 \text{ cm}$ f. $4.3 \pm 0.1 \text{ cm}$ X $1.2 \pm 0.1 \text{ cm}$ g. $8.42 \pm 0.01 \text{ g} \pm 4.0 \pm 0.1 \text{ cm}$ h. $2.08 \pm 0.01 \text{ cm}$ X $0.21 \pm 0.01 \text{ cm}$ i. $5.5 \pm 0.5 \text{ m}$ X $12.5 \pm 0.5 \text{ m}$ j. $45.001 \pm 0.001 \text{ m}^2 \pm 9.00 \pm 0.01 \text{ m}$ k. $1.2 \pm 0.1 \text{ m}$ X $3.6 \pm 0.1 \text{ m}$ 6. A sculpture whose mass is $48.6 \pm 0.1 \text{ kg}$ rests on a floor measuring $1.2 \pm 0.1 \text{ m}$ by $3.6 \pm 0.1 \text{ m}$. a. What is the area of the floor ? (Area = 1 x w)

- b. What pressure is the sculpture exerting on the floor? (Pressure = force / area, kg / m^2)
- 7. A sample of aluminium is found to have a mass of 11.25 \pm 0.05 g and a volume of 4.32 \pm 0.1 mL

a. What are the relative uncertainties in the mass and the volume?

- b. What is the experimental value for the density of aluminium?
- c. What are the relative and absolute uncertainties in the experimental density ?
- d. The literature value for the density of aluminium is 2.71 g mL⁻¹.
- i. What is the experimental error?
- ii. Comment on the experimental result .
- 9. Calculate the density of an object whose volume is 25.55 ± 0.01 mL and a mass of 20.26 ± 0.02 g.
- 10. A triangle has the following dimensions:

length = 5.72 ± 0.05 cm width = 3.51 ± 0.05 cm height = 4.03 ± 0.05 cm

- a. Calculate the absolute and relative uncertainties in the perimeter of the triangle.
- b. Calculate the absolute and relative uncertainties in the area of the triangle.