Ionic Concentration

1) In a solution contain 15.6 g of $MgCl_2$ in 1.25 L of solutions, what are the concentrations of the Mg^{2+} and $C\Gamma$?

2) What is the concentration of each of the ions present in the following solutions?
a) 1.5 M KCL
b) 0.45 M CaBr₂
c) 0.145 M Mg₃(PO₄)₂

3) Calculate the concentration of chloride ions CI^{-} when each of the following solution are prepared.

a) 2.0 g of NaCl is dissolved in 250.0 mL of H₂O.
b) 2.5 g of CaCl₂ is dissolved in 350.0 mL of H₂O.
c) 12.3 g of AlCl₃ is dissolved in 550 mL of H₂O.

4) If 25.0 mL of NaNO₃ solution (0.100 M) is added to 10.0 mL of Na₂CO₃ (0.150 M) what is the concentration of Na⁺ ions in solution?

5) If 525 mL of a solution containing 678 g $CaBr_2$ is mixed with 325 mL of a solution containing 11.4 g KBr what is the Br^- ion concentration of the resulting solution?

6) Which of the following contains the greatest amount of Cl⁻ ions? Explain.
a) 200 mL of 0.25 M HCL
b) 500 mL of 0.50 M MgCl₂

7) A solution is prepared by dissolving 0.584 g of oxalic acid, $H_2C_2O_4$, in enough water to make 100.0 mL of solution. A 10.0 mL aliquot (portion) of this solution is then diluted to a final volume of 250.0 mL. What is the morality of the final oxalic acid solution?

8) Calculate the concentration of all ions present in each of the following solutions ...
a) 0.10 g of MgCl₂ in 100.0 mL of solution
b) 55.1 g NH₄Br in 500.0 mL of solution
c) 0.610 g AlCl₃ in 250.0 mL of solution

9) The units of parts per million (ppm) and parts per billion (ppb) are commonly used by environmental chemists. In general, 1 ppm means 1 part of solute for every 10^6 parts of solution. In the case of aqueous solutions, a concentration of 1.0 ppm is equal to 1.0 µg of solute per 1.0 mL of solution. Parts per billion is defined in a similar fashion. Calculate the morality of each of the following aqueous solutions ...

- a) 5.0 ppb Hg in H_2O
- b) 10.0 ppm As in H_2O
- c) 0.10 ppm DDT ($C_{14}H_9Cl_5$) in H_2O