Definitions

<u>Homogenous</u>

- 1 phase

- Constant composition throughout

Substance being dissolved

Usually present in smaller quantity

Substance doing the dissolving

Greater amount

Maximum amount of solute that can be dissolved at a given temperature in 100 g of solvent (mol/L)

Generally solubility increases as temperature increases for solids therefore

the definition of solubility must specify temperature

Solubility decreases as temperature increases in gases

Units of concentration

$$Conc = \frac{n^{\circ} ofmolofsolute(mol)}{volume of solvent(L)}$$

$$Conc = \frac{n}{v} \left(\frac{mol}{L} \right)$$

MOLAR

Higher the concentration, higher the molarity

$$mass \% = \frac{mass OF solute}{mass OF solute + mass OF solvent} \bullet 100$$

$$volume\% = \frac{volumeOF solute}{volumeOF solution} \bullet 100$$

1. Calculate concⁿ of following

(a) 0.2 mol NaOH in 2L

$$Conc = \frac{n}{v} = \frac{0.2mol}{2L} = 0.1mol/L$$

0.05 mol NaNO₃ in 250mL

$$Conc = \frac{n}{v} = \frac{0.05mol}{0.25L} = 0.2mol / L$$

$0.015 \ mol \ K_2Cr_2O_7 \ in \ 1750ml$

$$Conc = \frac{n}{v} = \frac{0.015mol}{1.75L} = 8.57 \times 10^{-3} \, mol \, / \, L$$

2. Calculate the n° of moles:

0.5 mol/L of AgNO₃ in 750mL

$$n = vConc = (0.75 L)(0.5 mol / L) = 0.3 mol$$

2 M solⁿ of KOH in 125mL

$$n = vConc = (0.125L)(2mol/L) = 0.25mol$$

3. Calculate the volume of the following

0.12 M solⁿ containing **0.02 mol of MgCl₂**

$$v = \frac{n}{Conc} = \frac{0.02mol}{0.12mol/L} = 0.167L$$

1.15 mol/L solⁿ containing 0.3 mol of CuCO₃

$$v = \frac{n}{Conc} = \frac{0.3mol}{1.15mol/L} = 0.261L$$

Making of Solutions

$$n^{o} molNaOH = C \cdot V$$

= 0.50 $mol(0.25L)$
= 0.125 mol

 $massNaOH = n \cdot Mr$ $= 0.125mol \cdot 4.0g / mol$ = 5.0g