Standard Heats of Reaction and Hess' Law

Determine the heat of reaction for the following using Hess' Law of Summation of Heat and Δ H_f⁰ values Thermochemical Data Sheet .

Enthalpy change for a reaction = $\mathbf{D} H^0_{rxn}$ = $\mathbf{S} [\mathbf{D} H^0_f (\text{products})] - \mathbf{S} [\mathbf{D} H^0_f (\text{reactants})]$

 $C_6H_{6(l)} + 15/2 O_{2(g)} \longrightarrow 6 CO_{2(g)} + 3 H_2O_{(l)}$ 1. 2 NaOH $_{(s)}$ + SO_{3 (g)} \longrightarrow Na₂SO_{4 (s)} + H₂O_(l) 2. $4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} \longrightarrow 6 \text{ H}_2 \text{O}_{(g)} + 4 \text{ NO}_{2(g)}$ 3. $3 \operatorname{Cu}_{(s)} + \operatorname{Al}_2 \operatorname{O}_{3(s)} \longrightarrow 2 \operatorname{Al}_{(s)} + 3 \operatorname{CuO}_{(s)}$ $2 \operatorname{CO}_{(g)} + \operatorname{O}_{2(g)} \longrightarrow 2 \operatorname{CO}_{2(g)}$ 5. 6. When ammonia is oxidised according to the following equation: $4 \text{ NH}_{3(g)} + 7 \text{ O}_{2(g)} \longrightarrow 6 \text{ H}_2\text{O}_{(g)} + 4 \text{ NO}_{2(g)}$ -1132 .0 kJ are evolved, determine the heat of formation of ammonia, NH_{3(g)}. 7. The molar heat of combustion of palmitic acid, $C_{16}H_{32}O_{2}$ (s) is - 9948.4 kJ mol⁻¹. $C_{16}H_{32}O_{2(g)} + 23O_{2(g)} \longrightarrow 16CO_{2(g)} + 16H_2O_{(g)}$ Determine the molar enthalpy of formation of palmitic acid. 8. One of the "building blocks" for proteins such as those in muscles and sinews is amino acid called glycine, $C_2H_5NO_2$. The equation for its combustion is: 4 $C_2H_5 NO_{2}$ (s) + 9 O_2 (g) \longrightarrow 8 CO_2 (g) + 10 $H_2O_{(1)}$ + 2 N_2 (g) The value of its heat of combustion is - 973.49 kJ mol⁻¹. Calculate the heat of formation for glycine. 9. Glucose undergoes combustion according to the following equation: $C_6 H_{12}O_{6(s)} + 6 O_{2(g)} \longrightarrow 6 CO_{2(g)} + 6 H_2O_{(g)} \Delta H_f^0 = -2.82 \text{ x}10^3 \text{ kJ mol}^{-1}$ Determine the enthalpy of formation for glucose. 10. The reaction that occurs when a typical fat, glyceral trioleate, is metabolized in the body $C_{57} H_{104}O_{6(s)} + 80 O_{2(g)} \longrightarrow 57 CO_{2(g)} + 52 H_2O_{(1)}$ a) 37.8 kJ is evolved when 1.00 g of this fat (Molar Mass = 884) is metabolized. Calculate the molar enthalpy of formation of fat in kJ mol⁻¹. b) How many kilojoules of energy must be in the form of heat if you want t get rid of 1.00 pound (454 g) of this fat by combustion? Answers 1. –3 267.4 kJ 3. – 1397.6 kJ 4. +1203.8 kJ 5. –566 kJ 2. 7. –216.4 kJ 8. – 1258.1 kJ 9. –991.8 kJ 10. –71654.7 kJ 6. – 612.5 kJ