$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$$

$$\Delta H^0 = -572 \text{ kJ mol}^{-1}$$

 $\Delta H^0 = ?$

What is the enthalpy change for the following reactions:

a)
$$H_2O_{(l)} \longrightarrow H_{2(g)} + 1/2 O_{2(g)} \Delta H^0 = ?$$

b) What is the enthalpy change for the decomposition of 9g of water?

- b)
- The enthalpy change for the formation of 1kg of hydrogen gas? c)
- 2. Given the following equation:

a) b)

(4. (4. (1. (a)

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)} + 92.2 \text{ kJ}$$

What is the enthalpy change for the following reactions:

$$3N_{2(g)} + 9H_{2(g)} \longrightarrow 6NH_{3(g)}$$

$$1/2 N_{2(g)} + 3/2H_{2(g)} \longrightarrow NH_{3(g)} \Delta H^0 = ?$$

Given the following equation:

$$1/2 N_{2(g)} + O_{2(g)} + 33.9 \text{ kJ} \longrightarrow NO_{2(g)}$$

What is the enthalpy change for the following reaction:

$$2 \text{ NO}_{2(g)} \longrightarrow N_{2(g)} + 2 O_{2(g)}$$

- 3.20 g of methanol, CH₃OH, burns in excess air to produce carbon dioxide gas and liquid water, with the release of 715.0 kJ of energy.
- Write a balanced equation for this reaction, showing the heat of reaction for one mole of methanol.
- b) c) Write a thermo-chemical equation for the combustion of 6.60 g of methanol.
 - Sketch a potential energy diagram showing the combustion of one mole of methanol.
 - Alumina, Al₂O₃, can be reduced, using carbon, with difficulty, to produce aluminium:

$$2Al_2O_{3(s)} + 3C_{(s)} \longrightarrow 4Al_{(s)} + 3CO_{2(g)} \qquad \Delta H^0 = +3355.8 \text{ kJ}$$

- Calculate the enthalpy change for 1.00 mol of Al formed. a)
- Calculate the enthalpy change when 5.60 g of Al₂O_{3(s)} undergo reduction. b)
- Calculate the enthalpy change when 2.71 g of Al_(s) are formed. c)