Hess's Law and Calorimetry Problems

- 1. Given \blacktriangle H°_f = -394 kJ for CO_{2(g)}, \blacktriangle H°_f = -286 kJ for H₂O_(l) and \blacktriangle H°_{comb} = -891 kJ for CH_{4(g)}, determine \blacktriangle H°_f for CH_{4(g)}.
- 2. Determine \triangle H° for the following reaction

$$C_{(s)} + H_2 O_{(l)} \rightarrow CO_{(g)} + H_{2(g)}$$

Given the following equations:

- 1) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ 2) $CO_{(g)} + \frac{1}{2} O_{2(g)} \rightarrow CO_{2(g)}$ 3) $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(l)}$ $A H^{\circ}_{1} = -395 \text{ kJ}$ $A H^{\circ}_{2} = -281 \text{ kJ}$ $A H^{\circ}_{3} = -242 \text{ kJ}$
- 3. Given \blacktriangle H°_{comb} = -1301 kJ for C₂H_{2(g),} CO_{2(g),} \blacktriangle H°_f = -394 kJ for CO_{2(g)} and \blacktriangle H°_f = -286 kJ for H₂O_{(l),} calculate the \blacktriangle H°_f for C₂H_{2(g),}
- 4. Exactly 3.0g of $C_{(s)}$ was burned to $CO_{2(g)}$ in a copper calorimeter. The mass of the calorimeter was 1.500 kg and the mass of the water in which the calorimeter was immersed was 1.500 kg. The initial temperature of the system was 20°C and the final temperature was 31.0°C. Calculate the heat formation of $CO_{2(g)}$, under the conditions present in the calorimeter. The specific heat of copper is 0.39 J/g °C.
- 5. Given \blacktriangle H°_f = -85 kJ for C₂H _{6(g)}, \blacktriangle H°_f = -394 kJ for CO_{2(g)} and \blacktriangle H°_f = -286 kJ for H₂O_(l), calculate \blacktriangle H°_{comb} for C₂H _{6(g)}.
- 6. One step in the manufacturing of CCl_{4(I)} includes the reaction

$$3 \hspace{.1cm} \text{Cl}_{2(g)} \hspace{.1cm} + \hspace{.1cm} \text{CS}_{2(l)} \hspace{.1cm} \xrightarrow{\hspace{.1cm}} \hspace{.1cm} \text{CCl}_{4(l)} \hspace{.1cm} + \hspace{.1cm} \text{S}_2 \text{Cl}_{2(l)}$$

where \blacktriangle H°_f = -88 kJ for CS_{2(l)}, \blacktriangle H°_f = -139 kJ for CCl_{4(l)}, \blacktriangle H°_f = -60 kJ for S₂Cl_{2(l)}. If the reaction takes place inside a reactor which is cooled by water at 25°C must pass through the cooling coils of the reactor for each kilogram of Cl_{2(g)} reacting in order to keep the temperature at 25°C?

7. We can generate hydrogen chloride by heating a mixture of sulfuric acid and potassium chloride according to the reaction

 $2 \text{ KCl}_{(s)} + \text{H}_2 \text{SO}_{4(l)} \rightarrow 2 \text{ HCl}_{(g)} + \text{K}_2 \text{SO}_{4(s)}$ Calculate \blacktriangle H° for this reaction from the following thermochemical equations. Give your answer in kilojoules.

$$HCl_{(g)} + KOH_{(s)} \rightarrow KCl_{(s)} + H_2O_{(l)}$$

$$= -203.6 \text{ kJ}$$
 $H_2SO_{4(l)} + 2 \text{ KOH}_{(s)} \rightarrow K_2SO_{4(s)} + 2 H_2O_{(l)}$

$$= -342.4 \text{ kJ}$$