SavitaPall.com # The Enthalpy Change for a Reaction that can be Carried out in a Series of Steps in a Styrofoam Cup Calorimeter ### Introduction When all of the energy change of a reaction appears as heat and the pressure of the reacting system remains constant, then the change in enthalpy ΔH equals the heat of reaction (q). In this investigation you will be examining three separate but related reactions in which $\Delta H=q$. By making the appropriate measurements and calculations, you will determine ΔH for each reaction. The relationship between the three ΔH values will then be examined using Hess's Law. ### **Procedure** The class lab partners will perform part of the lab (ie. Part A, Part B, or Part C) as described in the lab. NOTE: Measure all volumes in graduated cylinders. Record to the nearest 0.1 cm³. Measure all masses to the nearest 0.01 g. Record all temperatures to the nearest 0.1°C ### **Calculations** 1. Complete all calculations required to fill in the data table. Show the steps of your calculations clearly on a separate sheet of paper and include units throughout your calculations. Round off all final answers to the appropriate number of sig figs. ### Assume: - a) The specific heat capacity of all solutions = the specific heat capacity of water $(4.18 \text{ Jg}^{-1} {}^{\circ}\text{C}^{-1})$ - b) The density of all solutions = density of water (1.00 g cm⁻³) - 2. Write out the thermochemical equations for the three parts of this investigation. Arrange them to indicate their relationship in terms of Hess's Law. - 3. Calculate the percentage error using: % difference = $|\Delta Ha + \Delta Hb + \Delta Hc| / |\Delta Hc| \times 100$ # ### **Discussion** - 1. Discuss at least two possible sources of error in this investigation, that would explain the difference above. - 2. a) Write the ionic equation for Part A and Part B. - b) Write and compare the result with the ionic equation for Part C. - 3. Suppose you had used 8 g of sodium hydroxide in Part A. - a) How would this have affected the change in temperature? - b) What quantity of heat would have been evolved in your reaction? - c)What effect would this have had on your calculations of the heat of reaction for Part A? - 4. Write the net ionic equation for the reaction between solutions of potassium hydroxide, KOH, and sulphuric acid, H₂SO₄. Compare the net ionic equations for this with that of Part B. What does the heat of reaction for Part B of this experiment represent? Write the thermochemical equation for Part B of the experiment. - 5. Predict the heat of reaction for NaOH and HNO₃. Explain your answer. - 6. A student performed the experiment for the calorimetric determination of the molar heat of neutralization of KOH with $\rm H_2SO_4$. 100 mL of 1.00 mol dm⁻³ KOH was reacted with 50.0 mL of 1.00 mol dm⁻³ $\rm H_2SO_4$, a temperature rise of 10.2 °C was observed. - a) What is the molar heat of neutralization for KOH, calculated by the student? - b) How will the students calculated value differ from the accepted value for this reaction? Explain your answer. - c) If the student used ethanoic acid, $CH_3COOH_{(aq)}$, instead of sulphuric acid, $H_2SO_{4(aq)}$, how will his value differ from the value obtained by the reaction of $H_2SO_{4(aq)} + KOH_{(aq)}$ Explain your answer. ## **Results and Observations** | | Part A: Dissolving | Part B: Neutralizing NaOH _(aq) | Part C: Dissolving and | |--------|---|---|--| | | NaOH _(s) in H ₂ O | with HCl _(aq) | Neutralizing NaOH _(s) in | | | Steps: | Steps: | HCl _(aq) | | | 1.Add 200 mL of room | 1.Add 100 mL of 1.00 mol dm ⁻³ | Steps: | | П | temperature water to a | HCl to a Styrofoam cup and | 1.Add 200 mL of 0.5 | | | Styrofoam cup. Record the | record the temp. | moldm ⁻³ HCl to a styrofoam | | | temperature | 2.Measure 100 mL of 1.00 | cup and record the | | | 2. Measure out a sample of | mol dm ⁻³ NaOH in a graduated | temperature of the solution. | | | NaOH(s) with a mass | cylinder and record its | 2.Measure out a sample of | | | between 3.9 g and 4.1 g. | temperature. | NaOH(s) with a mass | | | Record mass to 0.01 g. | 3. Pour the NaOH into the HCl in | between 3.9 and 4.1 g. | | | 3.Add NaOH(s) to the | the Styrofoam sup. Stir and | Record the mass to the | | | water. Stir gently until | record the maximum | nearest 0.01 g. | | | dissolved. Record | temperature. | 3.Add the NaOH(s) to the | | | maximum temperature | | acid solution. Stir gently | | | reached. | NaOH(aq) + HCl(aq)> | with a thermometer until all | | | | $NaCl(aq) + H_2O(l)$ | the NaOH is dissolved. | | | NaOH(s)> NaOH(aq) | | Record the maximum temp. | | | | | reached. | | | Mass of NaOH(s) | Temp of 1 mol dm ⁻³ HCl | Mass of NaOH(s) | | | Volume of Water | Volume of 1 moldm ⁻³ HCl | Volume of 0.5 moldm ⁻³ HCl | | | initial Temp of water | Temp. of 1 mol dm ⁻³ NaOH | Final temp. of solution | | O | Final Temp of solution | Volume of 1 mol dm ⁻³ NaOH | Endo- or Exo- | | | endo- or exo- | Highest temp. reached | | | | | Endo or Exo? | | |)
P | RESULTS | RESULTS | RESULTS | | | Change in Temp. | Change in temp | Change in temp. | | | Mass of Solution | Mass of solution | Mass of the final solution | | | Heat associated with | Heat associated with reaction (q) | Heat associated with the | | | reaction (q) | # moles of NaOH used (n=CV) | reaction (q) | | | # moles NaOH(s) used | Heat produced per mole of | # moles NaOH used | | | Heat produced per mole of | NaOH | Heat produced per mole of | | | NaOH(s) | Δ H _b in kJ per mol of NaOH | NaOH | | | ΔH_a in kJ per mol of NaOH | used | ΔH_c in kJ per mol of NaOH | | | used | | used | | | $\Delta H_a + \Delta H_b =$ | | Δ H _c |